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The Continuum Hypothesis – Fluid dynamics

Fluids: Plasma, gas, liquid
Gas kept at constant temperature in an enclosed container −→ the pressure will be constant in the

walls

Strong anisotropy
the same container with a very small quantity of gas −→ pressure as defined above is not a

continuous property of the gas.

Continuum hypothesis

The conditions that must be fulfilled so that the system can be considered as
a fluid. The volume elements in a fluid may contain in fact a large number of
particles (collectivity in number). The continuum hypothesis can also be
characterized in terms of the mean free path of the fluid particles (collective
momentum exchange). Therefore, in order that a given volume element be
considered as continuous, the particle/molecular density must be sufficiently
high, or the mean free path must be small with relation to some characteristic
dimension R of the system, that is λ� R.
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Example: Glass of Water

Let us consider a simple example of a fluid: a glass containing water.
Considering the density of water in the usual conditions ρ ' 1 g/cm3 and the
molecular mass m ' 18mH , where mH = 1.67× 10−24 g is the mass of a
hydrogen atom, the number density of the water molecules in the glass is

n ' ρ

m
' ρ

18mH
' 3× 1022 cm−3.

In order of magnitude, the molecular mean free path can be approximated by
the average separation of the molecules,

λ ∼ n−1/3 ' 3× 10−8 cm.

A characteristic dimension of the system (the glass) is the average radius,
R ' 5 cm. Therefore, we have λ� R, so that the continuum hypothesis is
fulfilled.
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The mass continuity equation

The state of an ideal fluid can be described by the velocity distribution of the
fluid, characterized by the velocity vector ~v(x, y, z, t) and by two
thermodynamic variables, such as the pressure P(x, y, z, t) and the density
ρ(x, y, z, t)
Let us consider a volume V of the fluid. The total fluid mass contained in this
volume is ∫

V
ρdV

The amount of matter that crosses dS per unit time is

ρ~v · ~ndS
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The total fluid mass that leaves volume V per unit time is∮
ρ~v · ~ndS

The integral extends through the whole surface around volume V

On the other hand, the fluid mass decrease per unit time is

− ∂

∂t

∫
V
ρdV
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In order to have mass conservation

∂

∂t

∫
V
ρdV = −

∮
ρ~v · ~ndS.

According to the divergence theorem, if ~A is a vector,∫
V

~∇ · ~AdV =

∮
~A · ~ndS,

so that ∮
ρ~v · ~ndS =

∫
V

~∇ · (ρ~v)dV .
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Therefore

∂

∂t

∫
V
ρdV = −

∫
V

~∇ · (ρ~v)dV

∫
V

[
∂ρ

∂t
+ ~∇ · (ρ~v)

]
dV = 0.

The Continuity Equation is thus ∂ρ
∂t + ~∇ · (ρ~v) = 0 .
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Example: Incompressible Fluids ρ = constant −→ ~∇ · ~v = ~0.

WARNING! and HINT!

An incompressible Fluid is different than an incompressible dynamics! The
operator ~∇ · ~v ≡ div~v !

Example: Steady State

∂ρ/∂t = 0 −→ ~∇ · (ρ~v) = 0

Example: Steady State and incompressible dynamics

∂ρ/∂t = 0 ∧ ~∇·~v = 0 −→ ~∇·(ρ~v) = ρ~∇·~v +~v · ~∇ρ = ~v · ~∇ρ = 0

The Mass Flux ~j = ρ~v

∂ρ

∂t
+ ~∇ ·~j = 0
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Let us consider again a volume V in the fluid. The total force acting on this
volume due to the interactions with the remaining fluid particles is

−
∮

P ~n · dS (1)

where the negative sign is due to the fact that the force acts on the
considered element. Applying the ‘gradient theorem’ (‘Gauss-Stokes’) to a

scalar quantity A, we have∮
A~n · dS =

∫
V

~∇A dV −→ −
∮

P ~n · dS =

∫
V

~∇P dV (2)
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The total derivative

...the relaxed, flowing stream, without force? No the partial derivative
neglects curvature and acceleration due to stationary displacements, thus
total time derivative is necessary

force = ρ× acceleration = ρ
d~v
dt

= ρ

k,l=3∑
k,l=1

vk
∂vl

∂xk
~el +

∂vk

∂t
~ek


= ρ

((
~v · ~∇

)
~v +

∂ ~v
∂t

)
(3)
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Basic ideal hydrodynamical (HD) equations

Mass continuity equation (mass conservation)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 , (4)

Momentum equation (Euler equation)

ρ

(
∂~v
∂t

+
(
~v · ~∇

)
~v
)

= −~∇p − ρ~g +~f , (5)

Energy equation (energy conservation)

∂U
∂t

+ ~∇ · ~S = ρ~g · ~v (6)

~S = (U + p)~v ∧ U =
p

γ − 1
+

1
2
ρ~v2 (7)
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Basic ideal MHD equations
Mass continuity equation (mass conservation)

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 , (8)

Momentum equation (Euler equation)

ρ

(
∂~v
∂t

+
(
~v · ~∇

)
~v
)

= −~∇p +
1
µ0

(
~∇× ~B

)
× ~B − ρ~g , (9)

Energy equation (Energy conservation)

∂U
∂t

+ ~∇ · ~S = ρ~g · ~v (10)

~S = (U + p +
~B2

2µ0
)~v −

~v · ~B
µ0

~B ,U =
p

γ − 1
+
ρ~v2

2
+

~B2

2µ0
(11)

No magnetic monopoles & Ampère’s law (initial condition/constraint &
quasi-stationary current)

~∇ · ~B = 0 ∧ ~∇× ~B = µ0
~j (12)
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....but although one fluid theory, we have two fluids, the relic of the
electron momentum equation and Faraday’s equation (induction
equation), as relic of Maxwell equations

...the ideal Ohm’s law & Faraday’s law

~E + ~v × ~B = ~0 ∧ ~∇× ~E = −∂
~B
∂t

⇒ ∂~B
∂t
− ~∇×

(
~v × ~B

)
= ~0 (13)

The last equation is somestimes also called ‘Induction equation of
ideal MHD’ .
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Useful relations for vector equations: vector algebra/analysis identities

~A× ~B = −~B × ~A (14)
~A ·
(
~B × ~C

)
=
(
~A× ~B

)
· ~C (15)

= ~B ·
(
~C × ~A

)
=
(
~B × ~C

)
· ~A (16)

= ~C ·
(
~A× ~B

)
= ~C ·

(
~A× ~B

)
(17)

~A×
(
~B × ~C

)
=
(
~C × ~B

)
× ~A = ~B

(
~A · ~C

)
− ~C

(
~A · ~B

)
(18)

~∇(fg) = f ~∇g + g~∇f (19)

~∇ · (f~A) = f ~∇ · ~A + ~A · ~∇f (20)

~∇× (f~A) = f ~∇× ~A + ~∇f × ~A (21)

~∇ · (~A× ~B) = ~B · (~∇× ~A)− ~A · (~∇× ~B) (22)
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Useful relations for vector equations: vector algebra/analysis identities

~∇× (~A× ~B) = ~A(~∇ · B) + (~B · ~∇)~A− ~B(~∇ · ~A)− (~A · ~∇)~B (23)

~∇(~A · ~B) = ~A× (~∇× ~B) + ~B × (~∇× ~A) + (~A · ~∇)~B + (~B · ~∇)~A (24)

∆f = ~∇2f = ~∇ · ~∇f (25)

∆~A = ~∇(~∇ · ~A)− ~∇× ~∇× ~A (26)

~∇× ~∇f = ~0 (27)

~∇ ·~r = 3 , ~r := (x , y , z) (28)
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What else is important or interesting? Vortices/vorticity of vector fields...

Example: Rotational flow and expansion of ‘curl’ respectively ’rot’

~ω = (0, 0, ω = constant) := 0~ex + 0~ey + ω~ez ∧ ~r := (x , y , z)

~v : = ~ω ×~r
rot~v = ~∇× ~v = ~∇×

(
~ω ×~r

)
= ~ω

(
~∇ ·~r

)
−~r

(
~∇ · ~ω

)
+
(
~r · ~∇

)
~ω −

(
~ω · ~∇

)
~r

general
= 2~ω

here
= 2ω~ez (29)

Implication: ω is like a rotational frequency, reflecting the rotation strength of
the flow around a centre!
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Introduction to nonlinear potential theory

approach for divergence and non-divergence free fields

The wish to get a vortex-free field (no or zero vorticity) the following potential
field representation is useful, namely

~v = ~∇ϕ
⇒ ~Ω := ~∇× ~v = ~0 . (30)

To manipulate, i.e. to extend, the representation Eq. (30), it is not enough to
add a second gradient of a potential, let us say ~∇β, because the
‘curl’ operator leaves the vorticity ~Ω unchanged, i.e. equal to zero.

A way out is for example to introduce a scalar function, let us say α as
multiplicator in front of the expression ~∇β, writing

~v = ~∇ϕ+ α ~∇β , (31)

which is often called Clebsch representation.
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The second term is a non-linear gradient term, which is not necessarily a full
gradient, indeed is usually in the non-trivial case never a full gradient! The
second part of the sum in Eq. (31) is a complete gradient, if, and only if,
β = β(α), α = α(β) respectively, at least locally, such that

~∇×
(
α~∇β(α)

)
= ~∇α×

(
β′(α)~∇α

)
= ~0

⇔ ∃ G =

∫
α dβ =

∫
αβ′(α) dα ,

(32)

with ~∇G = α~∇β, and β′(α) as derivative of β with respect to α. This is the
integrability recipe Eq. (32) for completing a gradient like in Eq. (31) .
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Returning to the non-trivial non-linear potential representation, i.e. Eq. (31),
its vorticity is given by

~Ω = ~∇×
(
~∇ϕ+ α ~∇β

)
= ~∇×

(
α ~∇β

)
= ~∇α× ~∇β + α ~∇× ~∇β

⇒ ~Ω = ~∇α× ~∇β .
(33)

As the vorticity is a ‘curl’, it is automatically divergence free, i.e. ~∇ · ~Ω = 0.
What is a vector potential representation?

~v = vx ~∇x + vy ~∇y + vz ~∇z . (34)

This reflects a 1-D character??? of Eq. (30) because one has only one coordinate,
although the potential function φ depends basically on all three space coordinates.

Warning!

Potentials, representing the fields can be regarded as coordinates, but one
should be aware that they may not be unique with respect to the usual unique
spatial coordinates, which are diffeomorphisms/manifolds of 2-or
3-dimensional space (points), see e.g. Grad & Rubin (1958), Arnold (1980).
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Bernoulli’s theorem(s)

From equations like, e.g., Eq. (33), one can derive conservation laws, i.e. (instead of
the vorticity ~Ω, we regard here the vector field ~V = ~∇α× ~∇β)

~V · ~∇α =
(
~∇α× ~∇β

)
· ~∇α = −

(
~∇α× ~∇α

)
· ~∇β = 0 ∧ ~V · ~∇β = 0 .(35)

The directional derivative with respect to a specific vector field implies the
conservation of a value along its trajectories, i.e. along the field lines of the vector field,
here a consequence of their Euler potential representation. What conservation laws
are valid if the Euler potentials are not explicitly given, but instead only one, ~V1 or two
vector fields, ~V1 and ~V2, or one knows only one vector field, but two integrals,
eventually not matching as Euler potential, with

~V · ~∇I = 0 or ~V1 · ~∇I = 0 ∧ ~V2 · ~∇I = 0 , (36)

with one known first integral I, are given.

‘Naive ’ implication of Eq. (36), but also an unmatched Eq. (35), where ~V is
not explicitely given

~V1 × ~V2 ‖ ~∇I ⇔ ~V1 × ~V2 = λ̃~∇I ⇒ ~V1 = λ ~V2 × ~∇I + µ~V2 (37)

V · ~∇α̃ = 0 ∧ V · ~∇β̃ = 0 ~V = λ~∇α̃× ~∇β̃ (38)
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We will now consider a specific example for the above formulated, general
conservation theorem Eq.(36), namely a conservation law following from the
Euler equation, with the help of the Weber-Grassmann identity

1
2
~∇
(
~V
)2

= ~V ×
(
~∇× ~V

)
+
(
~V · ~∇

)
~V . (39)

The Euler equation Eq.(40), i.e. the first order momentum or force equation,
can therefore be re-written according the Weber-Grassmann identity as

~∇p
ρ

+
(
~v · ~∇

)
~v = ~0

[
−~∇φ

]
(40)

⇒
~∇p
ρ

+
1
2
~∇~v2 = ~v× ~Ω . (41)

The conclusion is that the expression

Π := p +
ρ

2
~v2 , (42)

often called total pressure or Bernoulli pressure, is constant in a domain,
where the density is constant, if the vector product

~v× ~Ω = ~0 , (43)

often called Beltrami equation, i.e. vanishes everywhere in the domain. The
conservation of the total pressure Π is in some sense energy conservation.
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Assuming that the curl of the velocity field vanishes, i.e. ~v is a potential field
with ~v = ~∇ϕ,

~Ω = ~∇× ~v = ~0 , (44)

is a possibility to fulfill Eq. (43). To fulfill the mass continuity or mass
conservation equation with ρ =constant, we can write

~∇ · (ρ~v) = 0 ⇒ ~∇ · ~v = ~∇ · ~∇ϕ = ∆ϕ = 0 , (45)

i.e. one has to solve the Laplace equation. The velocity fields which are
everywhere (only) parallel to its own vortices

~Ω× ~v =
(
~∇× ~v

)
× ~v = ~0 (46)

are called Beltrami fields.
For incompressible fluids ρ =constant Beltrami- or potential fields guarantee
therefore the conservation of the total pressure Π, which is sometimes,
although its very specific constraints, called Bernoulli’s theorem. The problem
of an Euler equation can therefore be solved, by solving either (i) the potential
equation, i.e. the Laplace equation Eq. (45) (as far as the velocity field is
definitely vortex-free), or solving the Beltrami equation (ii) Eq.(46), and then,
for both cases, the pressure can be calculated from the total pressure
Eq. (42).
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Stationary incompressible flows

As for the incompressible flows ~v · ~∇ρ = 0, i.e. also ~v · ~∇f (ρ) = 0, the basic
Euler equation Eq.(40) can be manipulated by scalar multiplication with ~v,
such that

~v · ~∇
(

p
ρ

+
1
2
~v2
)

= ~v ·
(
~v× ~Ω

)
= 0 ⇒ ~v · ~∇

(
p +

ρ

2
~v2
)

= 0 ,

(47)

~Ω · ~∇p
ρ

+
1
2
~∇~v2 = ~Ω ·

(
~v× ~Ω

)
= 0 , (48)

⇒ ~Ω · ~∇
(

p +
ρ

2
~v2
)
−
~v2

2
~Ω · ~∇ρ = 0 (49)

respectively. The first conservation law Eq. (47) is usually that what is called
Bernoulli’s theorem or Bernoulli’s equation. Remark: Here no restrictions to
potential or Beltrami fields are necessary, only the restriction that the mass
density must be constant along streamlines.
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Basic assumptions and conclusions for 3D incompressible flows

Conditions and definitions for incompressible flows

~∇ · ~v = 0 ⇒ ~v · ~∇ρ = 0 ∧ ~v ⊥ ~∇ρ (50)
~w :=

√
ρ~v streaming–vector (51)

⇒ ~w · ~∇ρ = 0 ∧ ~∇ · ~w = 0 (52)

Π = p +
1
2
ρ~v2 Total pressure or Bernoulli–pressure (53)

Implications from stationary momentum equation of HD by applying the
Weber transformation or Weber-Grassmann identity

−1
ρ
~∇p = (~v · ~∇)~v ⇔ ~∇Π = ~w × (~∇× ~w) , (54)

Implications of the resulting momentum equation in 3D

~∇Π = ~w ×
(
~∇× ~w

)
⇒ ~w · ~∇Π = 0 ∧

(
~∇× ~w

)
· ~∇Π = 0 (55)

D. Nickeler Hydrodynamics



Basic assumptions and conclusions for 3D incompressible flows

Conditions and definitions for incompressible flows

~∇ · ~v = 0 ⇒ ~v · ~∇ρ = 0 ∧ ~v ⊥ ~∇ρ (50)
~w :=

√
ρ~v streaming–vector (51)

⇒ ~w · ~∇ρ = 0 ∧ ~∇ · ~w = 0 (52)

Π = p +
1
2
ρ~v2 Total pressure or Bernoulli–pressure (53)

Implications from stationary momentum equation of HD by applying the
Weber transformation or Weber-Grassmann identity

−1
ρ
~∇p = (~v · ~∇)~v ⇔ ~∇Π = ~w × (~∇× ~w) , (54)

Implications of the resulting momentum equation in 3D

~∇Π = ~w ×
(
~∇× ~w

)
⇒ ~w · ~∇Π = 0 ∧

(
~∇× ~w

)
· ~∇Π = 0 (55)

D. Nickeler Hydrodynamics



Basic assumptions and conclusions for 3D incompressible flows

Conditions and definitions for incompressible flows

~∇ · ~v = 0 ⇒ ~v · ~∇ρ = 0 ∧ ~v ⊥ ~∇ρ (50)
~w :=

√
ρ~v streaming–vector (51)

⇒ ~w · ~∇ρ = 0 ∧ ~∇ · ~w = 0 (52)

Π = p +
1
2
ρ~v2 Total pressure or Bernoulli–pressure (53)

Implications from stationary momentum equation of HD by applying the
Weber transformation or Weber-Grassmann identity

−1
ρ
~∇p = (~v · ~∇)~v ⇔ ~∇Π = ~w × (~∇× ~w) , (54)

Implications of the resulting momentum equation in 3D

~∇Π = ~w ×
(
~∇× ~w

)
⇒ ~w · ~∇Π = 0 ∧

(
~∇× ~w

)
· ~∇Π = 0 (55)

D. Nickeler Hydrodynamics



Stationary HD – MHS/analogy: Lagrange-Stokes
equation/Grad–Shafranov equation & Bernoulli equation

Implications from stationary momentum equation of HD by applying
the Weber-Grassmann identity in case of incompressibility (~∇ · ~v = 0)
and ~w =

√
ρ~v with ~∇ · ~w = 0...

−1
ρ
~∇p = (~v · ~∇)~v ⇔ ~∇Π = ~w × (~∇× ~w) , (56)

where Π = p + ρ~v2/2 = p + ~w2/2 is the total or Bernoulli-pressure.

With pure 2D approach

~w = ~∇×
(
ψ~ez

)
= ~∇ψ × ~ez ⇒ ∆ψ =

dΠ
dψ

(57)

Most important properties: Symmetries→ conservation laws

Π is conserved along field lines, Π is so called ‘first integral’ , i.e.
~w = ~∇α× ~∇β ⇒ Π = Π(α, β)
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Stationary Hydrodynamics (SHD) in 3D and conserved quantities: the
Euler-or Clebsch potentials

SHD equations with Hamiltonian structure

~∇β · ~∇× (~∇α× ~∇β) = −∂Π
∂α

~∇α · ~∇× (~∇α× ~∇β) =
∂Π

∂β
. (58)

Hamiltonian structure, conserved values,
potential representation similar to GS-theory
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As 2D example: MHS without gravitation and flows leads to
Grad-Shafranov equation

Vector potential, assume α = A(x , y) and β = z(+h(x , y))

~BS (x , y) = ~∇× ~A = ~∇×
(
A~ez

)
(+~∇A× ~∇h)

= ~∇A× ~∇z (+~∇A× ~∇h) (59)

~BS = ~∇A× ~ez + BzS~ez ⇒ ~BS · ~∇A = 0
⇒ A(x , y) = const are fieldlines(−projections). (60)

Grad–Shafranov equation (Grad, 1960, Shafranov, 1958)

~∇pS =~js × ~Bs ⇒
d

dA

(
pS + B2

zS/2
)

= − 1
µ0

∆A (61)
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SHD without gravitation: Lagrange–Stokes equation (1848)

Vector potential, assume α = ψ(x , y) and β = z(+h(x , y))

~w (x , y) = ~∇× ~ψ = ~∇×
(
ψ~ez

)
(+~∇ψ × ~∇h)

= ~∇ψ × ~∇z (+~∇ψ × ~∇h) (62)

~w = ~∇ψ × ~ez + wzS~ez ⇒ ~w · ~∇ψ = 0
⇒ ψ(x , y) = const are streamlines(−projections).(63)

Lagrange–Stokes equation (1781, 1848)

~∇Π = ~w × ~Ω ⇒ d
dψ

(
Π − w2

z /2
)

= ∆ψ (64)
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