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Emission Line Spectra

Although most stars display absorption lines or bands in their spectra, there are several
types of peculiar objects that show evidence of high-velocity outflows.

Wolf-Rayet stars

Broad emission lines and P Cygni profiles

Extended shells

Large scale velocity gradients and high
terminal velocities (500-3000 km s−1)

Deviations from local thermodynamic
equilibrium

The LBVs → P Cygni profiles

The Be stars → emission lines and high
rotation rates

Hot supergiants, symbiotic and nova-like stars,
flare-type stars.

Emission lines cannot be modelled with a classical theory of stellar atmospheres
(hydrostatic equilibrium and a plane-parallel approximation)
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The velocity field has a strong impact on

the line profiles

the excitation state of the gas because the opacity of the medium becomes more
transparent

the radiation field

A moving medium increases the probability that photons from deep layers escape
and, at the same time, the radiative acceleration modifies the velocity regime
(feedback).

The great advance in the subject initiated with the escape-probability method to solve
the radiative transfer problem and to compute the hydrodynamics for line-driven winds.
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Hydrodynamics Equations for Spherical Winds

Mass conservation

∂ρ

∂t
+ ∇̄ · (ρv̄) = 0

Momentum conservation

∂v̄

∂t
+ (v̄ · ∇̄)v̄ = −

1

ρ
∇̄P + ḡ +

1

ρ
f̄

For a steady, spherically symmetrical wind, we have,

Ṁ = 4πr2ρv

Two particular cases are

v ∂v
∂r

= − 1
ρ

∂P
∂r

− GM∗
r2

+ grad

grad ∝ 1
r2

grad ∝ ∂v
∂r
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Quantitative calculation of the radiation force

The radiation force per unit of volume and time exerted on a point particle is equal to
the momentum removed from the incident radiation integrated over all the directions
and frequencies,

F( ¯r , n̄) = 4π
c

∫∞
0 κν(r̄) ρ(r̄)Fν(r̄) dν, where Fν(r̄) = 1

2

∫ +1

−1
Iν(r̄ , µ)µ dµ

This expression depends on the medium’s opacity at the distance r̄ , the photospheric
intensity and emission and absorption processes between the photosphere and r̄ .
κν(r̄) (in units of cm2 g−1) consists of three main contributions:

κν(r̄) = κS (r̄) + κC
ν (r̄) + κL

ν(r̄)

κS (r̄): scattering coefficient (Compton/Thomson)

κC
ν (r̄): continuum absorption (bound free and free-free) often neglected,

κL
ν(r̄): line absorption coefficient (thousands of line transitions)

The Compton effect is the interaction between photons and free electrons. If
( 1
2
mv2 ≪ mc2), the frequency shift will be tiny. Small amounts of energy exchanged

(repeated many times) can build up and produce substantial effects.
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To properly calculate the radiation force,

Fr̄ =
4π

c

∫ ∞

0
κν(r̄) ρ(r̄)Fν(r̄) dν

we have to

solve the TR in a moving medium → to compute line opacities (e.g., ∼ 500 000
line transitions and line fluxes
compute the total radiation force
solve the hydrodynamical equations → including the radiation force

Radiation force is not observable!
compute a wind model (hydrodynamics + RT)
compare the theory with observations

Figure 1: Calculated and observed UV spectrum for zeta Puppis (Pauldrach et al 2003)
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Radiative Transfer in a moving medium

A straightforward approach is to formulate the transfer equation in the
inertial or observer’s frame.

A plasma volume moves with v̄(r̄) relative to an external observer at rest.

A photon (ν), travelling in direction n̄, as
measured in the observer’s frame, has an
atom’s frame frequency ν′,

ν′ = ν − ν0 (n̄ · v̄/c)

Disadvantage
opacity and emissivity, as seen by
external observer becomes
angle–dependent

κν(r̄ , n̄) and ην(r̄ , n̄)

Figure 2: Doppler shift

between ν′, measured in the
observer’s frame, and the local
atom frame (ν0) at rest.

→ ν0 at rest

→ ν′ < ν0 (redshifted)

→ ν′ > ν0 (blueshifted)
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Radiative acceleration due to
electron scattering

ḡS
rad (r̄) =

4π

c

∫ ∞

0

κS (r̄) ρ(r̄)Fν(r̄) dν

κSρ = ne σe

σe = 6.65 10−25 is the Thomson cross-section

κT = 0.34 cm2 g−1 (canonical value) for fully
ionised plasma at solar abundance.

The contribution of the Thomson scattering to
the radiative acceleration,

gT =
4π

c
ne σe

∫ ∞

0

Fν(r̄) dν = ne
σe L

4πc r2

L: the star’s luminosity diluted by distance.

The radiative acceleration, as gravitational
acceleration, are ∝ r−2

Radiative acceleration due to
spectral lines

ḡL
rad (r̄) =

∑
lines

4π

c

∫ ∞

0

κL
ν(r̄) ρ(r̄)Fν(r̄) dν

κL
ν is the line opacity coefficient between levels

l (lower) and u (upper) with energy hν0

κL
ν ρ =

πe2

mec
fl nl

(
1−

nu gl

nl gu

)
ϕ(ν − ν0)

κL
ν ρ = χℓ

0 ϕ(∆ν)

nl and nu are the number density of ions
in levels l and u (cm−3)

gl and gu are the statistical weights

fl is the oscillator strength of the line

ϕ(ν − ν0) is the normalised line profile
function
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Different phenomena affect the line width.

Pressure effects

Lorentzian profile

ϕ(∆ν) d∆ν = (γ/4π)2

(ν−ν0)2+(γ/(4π)2
d∆ν

Figure 3: γ is the full width at half maximum
(FWHM)

Temperature effects

Gaussian profile

ϕ(∆ν) d∆ν = 1√
π

1
δνD

e
−
(

ν−ν0
δνD

)2
d∆ν

δνD = ν0
c

√
2KT
me

and
∫∞
−∞ ϕ(∆ν) d∆ν = 1

Figure 4: The width is given by the kinetic energy of
particles (Maxwell-Boltzmann velocity distribution). At
∆ν = 1.5 δνD , the absorption coefficient is 10% the value in
the line center.
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Radiative acceleration due to spectral lines

gL
rad (r̄) =

∑
ℓ

4π

c

∫ ∞

0

χℓ
0 ϕ(∆ν)Fν(r̄) dν

The summation is over thousands of individual line transitions (ℓ) assuming
non-overlapping lines for which the wind is optically thick.

χℓ
0 = πe2

mec
fl nl

(
1− nu gl

nl gu

)
LTE nu

nl
→ Boltzmann distribution

NLTE → dnl
dt

= 0 (rate equations)

Figure 5: Energy level diagram of the most
important levels of Mn i.

Partial Grothian Diagrams

Figure 6: Energy level diagram of
the most important levels of Fe ii
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The Line Interaction Region

A photon νp emitted by the star in direction θ′ (i.e., along the path z) can be
absorbed by the line transition if it encounters ions with a velocity vz such that the
Doppler shift brings νp within the line width in the atom’s frame,

ν0 − 1.5 δνD ≤ νp (1− vz/c) ≤ ν0 + 1.5 δνD

As vz ∈ (0, v∞), photons νp can interact with
a line, along its path, in the interval

ν0 − 1.5 δνD ≤ νp and

νp ≤ ν0+1.5 δνD
(1−v∞/c)

≃ (ν0 + 1.5 δνD) (1 + v∞/c)

(ν0−1.5 δνD) ≤ νp ≤ (ν0+1.5 δνD) (1+v∞/c)

Outside this range, photons will not be
absorbed!. Figure 7: Line interaction region (solid blue line) is the region

where the wind absorption occurs
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The large extension for the interaction region complicates the calculation of the
radiative force since it requires knowledge of the radiation field and the absorption
coefficient.

Position r and velocity vz where the
absorption occurs!

ν0 +∆ν = νp
(
1− vz

c

)
In a (z, p) coordinate system,

vz (r) = v(r) cosθ =
z

r
v(r)

∆ν = νp
(
1− z

r
v(r)
c

)
− ν0

Then, the size of the interaction region
depends on the line width and velocity
gradient Figure 8: Line interaction region (solid blue line)
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The Sobolev Approximation

The size of the interaction region:

∆ν = νp
(
1− z

r
v(r)
c

)
− ν0

if δνD → 0

τνp (z1) =

∫ ∞

z1

κνp (z) ρ(z) dz

If the interaction region is very narrow, it is
possible to simplify the radiative transfer in
stellar winds. V. Sobolev solved this
equation in the limit that the interaction
region is infinitely narrow → ”The Sobolev
Approximation”.

ϕ(ν − ν0) ≡ δ(ν − ν0)

and the size of the interaction region
reduces to a point, the Sobolev point that
can be derived from:

ν0 = νp (1− vz (rs)/c)

vz (rS ) =
z

rS
v(rS ) = c

(
1−

ν0

νp

)
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The Sobolev optical depth
The optical depth at the frequency νp along a line in the direction z is defined as

τνp (z1) =

∫ ∞

z1

κνp (z) ρ(z) dz =
π e2

me c
fl

∫ ∞

z1

nl (z)

(
1−

nu gl

nl gu

)
ϕ(∆ν)dz

since ∆ν(z) = νp (1− vz/c)− ν0

τνp (z1) =
π e2

me c
fl

∫ ∆ν)(z=∞)

∆ν(z1)
nl (z)

(
1−

nu gl

nl gu

)
dz

d(∆ν)
ϕ(∆ν)d(∆ν),

Assuming a delta function for the profile and integrating, we
have,

τνp (z1) =
π e2

me c
fl nl (rs)

(
1−

nu gl

nl gu

) (
dz

d∆ν

)
rs

τνp (z1) = χℓ
0(rs)

(
dz

d∆ν

)
rs

→ Sobolev optical depth

where χℓ
0 and dz/d∆ν are now evaluated at the Sobolev

point.
The Sobolev optical depth is a
step function
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Calculation of dz/d∆ν

Using the relationship between z and ∆ν

∆ν = νp
(
1− z

r
v(r)
c

)
− ν0 where r2 = z2 + p2

(
dz

d∆ν

)
rs

=
c/ν0

µ2 dv
dr

+ (1− µ2) v
r

where µ = cos θ = z/r and νp ≈ ν0

τν0 (rs) = χℓ
o(rs)

c/ν0

µ2 dv
dr

+ (1− µ2) v
r

The Sobolev optical depth in the radial direction (µ = 1)

τν0 (rs , µ = 1) = χℓ
o(rs)

(
dv

dr

)−1

due to Doppler shift!

The Sobolev optical depth in the tangential direction (µ = 0)

τν0 (rs , µ = 0) = χℓ
o(rs)

( v

r

)−1
due to spherical divergence!
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Conditions for the Sobolev approximation

Photons from the photosphere interact only with the gas at rs and a
narrow volume around it.

Narrow ”line interaction region” are obtained if

The absorption profile is narrow

The velocity law is steep → large gradient dv/dr

Under this condition, the optical depth will also be reduced to a point,
the ”Sobolev point”, which depends only on the local conditions!

The radiative transfer equations are simplified enormously for a moving
medium.

The fraction of radiation that reaches rs is called ”penetration
probability”

The radiation emitted or scattered from rs is expressed in terms of
an ”escape probability”
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The Penetration Probability

To compute the radiation field, we use the formal solution of the radiative transfer for
the monochromatic intensity evaluated at τs(ν, µ),

Iν(τν , µ) = I cν e−τν +
�����������∫ τν

0

Sν(τν) e
−(τν−tν ) dtν (1)

where I cν is the radiation field from the star’s photosphere, and

τν =

∫ r

R⋆

χℓ
0 ϕ(∆ν) dz

τνp = χℓ
0

dz

d∆ν

∫ ∆ν(r)

∆ν(R⋆)

ϕ (∆ν) d(∆ν) = τ0 Φ(∆νµ)

∆νµ = νp − ν0 (1 + µV /c)
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Iνp (µ) = I cν0 e
−τ0 Φ(∆νµ)

∫ ∆ν(r)

∆ν(R⋆)

ϕ (∆ν) d(∆ν) = Φ(∆νµ)

Let’s compute the mean intensity.

Jνp =
1

2

∫ 1

µ⋆

Iνp (µ)dµ =
1

2
I cν0

∫ 1

µ⋆

e−τ0 Φ(∆νµ)dµ

Integrating over all the profile

J̄νp =
1

2
I cν0

∫ 1

µ⋆

∫ ∞

−∞
Φ(∆νµ)e

−τ0 Φ(∆νµ)dµ d∆νµ
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J̄νp =
1

2
I cν0

∫ 1

µ⋆

∫ 1

0

e−τ0 dΦ(∆νµ)dµ

J̄νp =
1

2
I cν0

∫ 1

µ⋆

1− e−τ0

τ0
dµ

βc I
c
ν0

βc =
1

2

∫ 1

µ⋆

1− e−τ0

τ0
dµ

Is the penetration probability
For photons in a radial direction,

βc =
1− µ⋆

2

1− e−τ0

τ0

where the Sobolev optical depth (when µ = 1) is

τν0 (rs , µ = 1) = χℓ
o(rs)

c

ν0

(
dv

dr

)−1
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Under the Sobolev approximation, the radiative acceleration takes a straightforward
form,

ḡL
rad =

χℓ
0

c

∮ ∫ ∞

−∞
ϕ(∆ν) I cν e−τ0Φ(∆νµ) d(∆νµ) n̄ dΩn̄

I cν0 varies very slowly with the frequency, and the profile function ϕ(∆νµ) is very
narrow.

gL
rad =

χℓ
0

c

∮
I cν0 (r ,Ω) n̄ dΩ

∫ ∞

−∞
e−τ0Φ(∆νµ) dΦ(∆νµ)

Finally,

ḡL
rad =

χℓ
0

c

∮ [
1− e−τ0

τ0

]
I c (Ω) n̄ dΩn̄.

For µ = 1

gL
rad =

χℓ
0vth

c2

(
ν0Lν

L∗

)
L∗

4πr2

[
1− e−τ0

τ0

]
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Optical thin lines → τ0 ≪ 1

gL
rad =

χLvth

c2

(
ν0Lν

L∗

)
L∗

4πr2

[
1− e−τ0

τ0

]
e−τ0 = 1− τ0

gL
rad (thin) =

χLvth

c2
L∗

4πr2
(3)

Since it has a dependence ∝ 1/r2, similar to gravity acceleration, it leads to an
apparent gravity (geff ), or effective gravity:

geff = g + gS
rad + gL

rad (thin) = −
GM∗(1− Γ− Γthin)

r2
(4)

where

Γthin =
Nthin χ

L vth L⋆

4πc2 G M⋆
, (5)

Nthin is the number of optically thin lines. The contribution of these thin lines leads to
an effective gravity.

Remember to correct the gravity if you want to calculate the star’s mass!
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Optical thick lines → τ0 ≫ 1

The term inside the brackets tends to τ−1
0 = κL ρ L−1

S , so the line acceleration can be
approximated by

gL
rad (thick) =

χL(r̄)vth

c2
L

4πr2
1

τ0
=

L

4πr2ρ c2

(
dv

dr

)−1

rs

. (6)

which depends on the velocity gradient.
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Line acceleration for an ensemble of lines
The total line force, due to the addition of all the single lines of atoms and ions for a
point star approximation and non-overlapping single lines, is given by:

gL =
∑
ℓ

(
Fν∆νD

c

)
ℓ

(
dv/dr

ρ vth

)
(1− e−ξℓt).

The line acceleration can be expressed in terms of the Thomson acceleration

gL
rad =

σe F

c
M(t)

where

M(t) =
∑
ℓ

∆νD Fν

F

1

t
(1− e−ξℓt)

t =
σe ρ vth

dv/dr
with τ0 = ξℓt

All lines are in resonance with photons. The acceleration depends on the velocity
gradient. Therefore, there is a non-linear feedback.
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The multiplier parameters

Abbott (1982) approximated the force
multiplier function, calculated with thousands
of lines with an analytical approximation using
three line-force parameters k, α, and δ.

M(t) = k t−α (10−11 ne

W
)δ

where k, and α are parameters determined by a
power-law fit of t.

Since
t =

σe ρ vth

dv/dr

gL
rad ∝ (dv/dr)α
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Typical values of the parameters

Each wind model is completely characterised by the four model parameters Teff ,
log g , ne/W , and t

0 ≤ α ≤ 1

Optically thick lines have α = 1

Optically thin lines have α = 0

Typical values 0.4 ≤ α ≤ 0.6

For O-type stars, k ∼ 0.1.

Often δ < 0.12.

For strong changes in the ionization
equilibrium δ > 0.2 or even δ < 0
(Puls 2008).

25 / 29



The parameter k can be interpreted as the
fraction of photospheric flux, which would
be blocked if all lines were optically thick,
divided by α.

Figure 9: Emergent flux from the indicated model
atmosphere of Kurucz (1979). Shaded areas show
wavelengths where the momentum of the radiation field
is absorbed by the wind. Extracted from Abbott1982.
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Dependence with Metallicity

Figure 10: The dependence of the line acceleration
on the density (ne/W ) of the absorbing gas in the wind
for three representative values of t. Extracted from
Abbott1982.

The calculated acceleration can be
approximated by

M(t) = 0.28 t−0.56(N11)0.99 (Z/Zo)0.44

N11 in units of 1011 cm−3

Z/Zo is the mass fraction of metals
relative to the sun.

The line acceleration increases with
increasing metallicity and electron density.
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Summary

Thomson acceleration

gT ∝ 1
r2 for electron scattering

Radiative line acceleration

gL
rad ∝ 1

r2 for optically thin lines

gL
rad ∝ dv

dr for optically thick lines

gL
rad ∝

(
dv
dr

)α
for ensemble of lines

gL
rad increases with metallicity

{
Doppler-effect is important!
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Conclusions

The Sobolev approximation is

A effective methods for modelling emission spectra

It plays an important role in the radiation hydrodynamics

The present formulation for the line acceleration is valid for

Spherically symmetric stellar wind

Point radiation source

Velocity laws that increase monotonically with radius

Line source function approximated by the Sobolev theory.

Completely non-coherent scattering

For regions close to the photosphere, where the size of the stellar disk is appreciable,
the line acceleration of the line can be reduced up 40%.

The effects of line overlap are the largest source of uncertainty. Generally, it is

overestimated at small radii, and

underestimated at large radii

A different parameterisation has been suggested by Gayley (1995), and both
parameterisations are consistent though.
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