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Introduction
The radiative transfer theory or radiation transport theory describes

Figure 1: Earth’s atmosphere

Figure 2: The Pleiades - Light scattering.

the energy transfer of electromagnetic
waves (or photons) propagating through a
medium that can:

Absorb radiation
Emit radiation
Scatter radiation

The radiative transfer theory involves many
research fields:

theoretical astrophysics
remote sensing
cosmology
physics (theory of neutron transport,
flows in hyper-compressed layers,
nuclear reactors)
engineering (rocket engines, plasma
generators and solar sailing)
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At the beginning of 1880, the transport of energy by radiation through a medium
became important to explain the distorted spectrum of the Sun when compared with a
black body model.

Figure 3: Comparison between a black body (5700 K) and the sun
spectrum.
Extracted from http://www.globalwarmingart.com/wiki/File:Solar-Spectrum-png
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Milestones: Radiative Transfer Theory

Stellar Astrophysics:

The 1920’s → Theory of monochromatic scattering (Eddington, Milne, and
others)

1940 - 1960 → accurate approximate solutions to the basic radiative transfer
equations (Ambartsumian, Sobolev, Chandrasekhar)

1960 -1990 Improved solutions for static and moving media (Feautier, Mihalas,
Rybicki, Simmoneau)

Today → accessible computer programs

for plane-parallel atmospheric layers (ATLAS12, SYNTHE, TLUSTY,
SYNSPEC, PHOENIX, etc)

form spherical moving media (e.g., CMFGEN; FASTWIND, MCRT,
PoWR, APPEL, IIM, among others).
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Description of the Radiation Field

Classical Theory

Electromagnetic radiation is defined by its
amplitude and colour (ν)

The specific intensity Iν(r̄ , n̄, t) represents

δEν = Iν(r̄ , n̄, t) dν ds cos θ dt dΩ̄n̄.

Quantum Theory

Photons of E = h ν and p̄ = (h ν/c) n̄.

Iν(r̄ , n̄, t) ∝ h ν δN

N (r̄ , n̄, t): occupation number of photons
per unit volume phase space at time t.

δN (r̄ , p̄, t) = Φ(r̄ , p̄, t) dr̄3 dp̄3

Φ(r̄ , p̄, t) is the phase-space density.

Figure 4: Radiation beam within the solid angle
dΩn̄ in the direction n̄.
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δ E = h ν δN = h ν Φ(r̄ , p̄, t) dr̄3 dp̄3

dp̄3 = dpx dpy dpz (cartesian coordinates)

In spherical coordinates:

dpx = p2dp sin θ
dpy = p2dp sin θ cos ϕ dθ dϕ
dpz = p2dp cos θ cos ϕ dθ dϕ

dp3 = p2 dp dΩn̄ and p2 dp =
h3 ν2

c3 dν

δ E = (h ν) Φ(r̄ , n̄, t) ds cos θ c dt p2 dp dΩn̄

δ E = (h ν) Φ(r̄ , n̄, t) ( h3 ν2

c2 ) ds cos θ dt dν dΩn̄

The specific intensity is a distribution function,

Iν(r̄ , n̄, t) =
h4 ν3

c2 Φν(r̄ , n̄, t).

Recovering the classical definition
δEν = Iν(r̄ , n̄, t) dν ds cos θ dt dΩ̄n̄.

Figure 5: Spherical coordinates,
where dΩ = sen θ dθ dϕ.
θ: colatitude angle
ϕ: azimuthal angle
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The Kinetic Equation
The evolution of the function Φ(r̄ , p̄, t) ⇒ a change in N and must satisfy a typical
kinetic equation,

dΦ
dt

=
∂Φ
∂t coll

+ S.

The total derivative of the distribution function

dΦ
dt

=
∂Φ
∂t

+
∑

i

∂Φ
∂ri

∂ri
∂t

+
∑

i

∂Φ
∂pi

∂pi
∂t

,

where ∂ri
∂t = vi is the i-component of the velocity

∂pi
∂t = fi is the i-component of the force exerted over the particles, which is null in our

case.

Then,

dΦ
dt

=
∂Φ
∂t

+
(

v̄ · ∇̄
)

Φ + ����(̄
f · ∇̄p

)
Φ =

(
∂Φ
∂t

)+
−
(

∂Φ
∂t

)−

⇒ Terms of creation and destruction of particles.
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The Radiative Transfer Equation

Since Iν(r̄ , n̄, t) ≡ h4 ν3

c2 Φν(r̄ , n̄, t)

Iν(r̄ , n̄, t) also satisfies a kinetic equation or Boltzmann equation.

∂Iν
∂t

+ c
(

n̄ · ∇̄
)

Iν =
(

∂Iν
∂t

)+
−
(

∂Iν
∂t

)−

This equation is usually expressed as a function of the photon path lengths,

1
c

∂Iν
∂t

+
(

n̄ · ∇̄
)

Iν =
( 1

c
∂Iν
∂t

)+
−
( 1

c
∂Iν
∂t

)−

︸ ︷︷ ︸
geometry

︸ ︷︷ ︸
physical properties of the medium

It represents a law of energy conservation.

A rigorous presentation of the RT problem is found in Chandrasekhar (1960), Mihalas
(1978), Rybicki and Lightman (1979), Mihalas and Mihalas (1984) and Hubeny and
Mihalas (2014).
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The Interaction between Matter and Radiation
The interaction between matter and radiation can add or remove radiation along the propagation direction

Absorption of Radiation

Figure 6: Energy is removed from the
beam. Loss of energy due to true
absorption-scattering processes.

[χν (r̄)] in cm−1

Extinction coefficient: χν(r̄)

χν depends on T and P

∂I
∂L

−
= χν(r̄) Iν(r̄ , n̄) (2)

It is composed of:

true absorption coefficient
χth

ν (T , P)
scattering coefficient χs

ν(T , P)

χν = χth
ν + χs

ν (3)
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Scattering Processes
The interaction of light with particles (dust, ice) and molecules produces several
interesting and important effects

Refraction
Reflection
Scattering
Diffraction
Polarisation

Figure 7: Reflexion nebulae IC 349

Figure 8: Direct reflections from
tiny ice crystal. Credits:
http://homework.uoregon.edu/pub/class/atm

Figure 9: Light pillars. Colours
and shapes are defined by crystals’
location
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The scattering process depends on the wavelength
to scatter particle size ratio rs .

When particle sizes are tiny relative to the
incident wavelength
rs ≪ λ ⇒ Rayleigh scattering ∝ λ−4

When the particle size is comparable or
greater than λ
rs ≥ λ ⇒ various forms of MIE scattering
(spherical particles)

For large particles, the incoming light is
strongly forward scattered.

The MIE theory is essential in studying water
droplets, aerosols, dusty disks and the ISM.

Mie theory considers both the scattering and absorption of light by
the particle, as well as the angular distribution of scattered light

Blue light (4000 Å) compared to red light (7000 Å) is
scattered (7/4)4 = 9 times more efficiently
→ this explains why the sky is blue!

For cloud water droplets, the wavelengths are scattered in
all directions → clouds are usually white.
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Emission coefficient: ην(r̄)

Figure 10: Energy added to the beam due to true
absorption and scattering processes.

[ην (r̄)] is in ergs cm−3 s−1 Hz−1 sr−1

Combine image of the Helix nebulae in Hα, [O III] and [S
II] narrow-band filters. Extracted from
https://rk.edu.pl/en/helium-argon-and-neon-narrowband-
imaging/

Emission coefficient: ην(r̄)

ην depends on T and P

∂I
∂L

+
= ην(r̄)

ην also depends on T and P It is

composed of:

true emission coefficient
ηth

ν (T , P)
scattering emission coefficient
ηs

ν(T , P)

ην = ηth
ν + ηs

ν
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The LTE condition implies that all small-volume element of a medium is at the local
thermodynamic equilibrium, so the state of any point can be characterised by the
local temperature T(r̄).

This supposition is lawful when collisions among particles of the medium occur very
frequently. In this case, emissivity and opacity are related by Kirchohoff’s law.

Figure 11: Black body radiation curves at different temperatures .

ηth
ν

κth
ν

= Bν(T ) and Bν(T ) = 2 h ν3

c2
1

ehν/kT −1 is the Planck function
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Frequency and phase redistribution function
Scattering is a problem in Radiative Transfer codes ⇒ because it strongly modifies the
incoming frequency radiation distribution.

Monochromatic scattering
⇒ the photon frequency does not change
in the process of their diffusion.

If the atom absorbs a quantum of radiant
energy, it must emit a quantum with
exactly the same energy if it is to return to
its initial state.

This is valid for scattering by large
particles and stimulated emission.

Heisenberg’s uncertainty principle
The finite life of the upper state implies
that the energy of the absorbed and
subsequently re-emitted quantum may be
different from the energy involved in the
electronic transition.

The upper state acts as though it had a
finite energy width, permitting the capture
of quanta of various frequencies. 14 / 52



Absorption and Re-emission in the same spectrum line

The RT problem is very complicated by
the presence of scattering interactions.

These processes redistribute radiation in
both frequency and direction and introduce
a non-local coupling to the ambient
material.

The probability that a photon ν travelling
in the direction n̄ is absorbed and, then,
re-emitted photon with ν′ = ν + dν in the
direction n′ and dΩ′ is

R(ν, n̄; ν′, n̄′)dν dΩn̄ dν′ dΩ′
n̄′

R(ν, n̄; ν′, n̄′) is called the redistribution
function

∫ ∫ ∫ ∫
R(ν, n̄; ν′, n̄′)dν dΩn̄ dν′ dΩ′

n̄′ = 1

The absorption profile is defined

ϕ(ν) dν dΩ = 4π dν dΩ

∮ ∫ ∞

−∞
R(ν, n̄; ν

′
, n̄′) dν

′ dΩ′
n̄′

with normalisation
∮

ϕ(ν) dν dΩ = 4π
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If the frequency and phase functions are independent (i.e., in the rest frame), then

R(ν, n̄; ν′, n̄′)dν dΩn̄ dν′ dΩ′
n̄′ = p(ν, ν′) g(n̄, n̄′) dν dν′ dΩn̄ dΩ′

n̄′

The probability that a photon (ν′, n̄′) will be absorbed is

χν′ (r̄) Iν′ (r̄ , n̄′) dν′ dΩ′
n̄′

4π

The probability that the event will be followed by the emission of a photon (ν, n̄) is

ηs
ν(r̄) =

∫ ∞

−∞

∮
χν′ (r̄) Iν′ (r̄ , n̄′) p(ν, ν′) g(n̄, n̄′) dν′ dΩ′

n̄′

4π
dν dΩn̄

Isotropic scattering gA(n̄, n̄′) = 1
4π

Dipole scattering gB(n̄, n̄′) = 3
16π

(1 + cos2 γ)
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The probability that a photon will be emitted is

ηs
ν(r̄) =

∫ ∞

−∞

∮
χν′ (r̄) Iν′ (r̄ , n̄′) p(ν, ν′) g(n̄, n̄′) dν′ dΩ′

n̄′

4π
dν dΩn̄

For Thomson scattering (grey case)

Coherence in atom’s frame
p(ν, ν′) = δ(ν − ν′)

Isotropic scattering gA(n̄, n̄′) = 1
4π

.

ηs
ν(r̄) =

χs

4π

∮
Iν(r̄ , n̄′) dΩ′

n̄′

Defining the mean intensity is

Jν(r̄) =
1

4π

∮
Iν(r̄ , n̄′) dΩ′

n̄′

ηs
ν(r̄) = χsJν(r̄)

For a Line transition

Incoherence in atom’s frame
p(ν, ν′) = ϕ(ν − ν′)

Isotropic scattering gA(n̄, n̄′) = 1
4π

.

ηs
ν(r̄) =

χs
o

4π

∮
Iν(r̄ , n̄′) ϕ(ν − ν′) dΩ′

n̄′

Defining the mean intensity is

J̄ν(r̄) =
1

4π

∮
Iν(r̄ , n̄′) ϕ(ν − ν′) dΩ′

n̄′

ηs
ν(r̄) = χs J̄ν(r̄)
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The Source Function
Splitting thermal from scattering contributions in the source function, we have

Sν = ην(r̄)/χν(r̄) =
ηth

ν + ηs
ν

χth
ν + χs

ν

=
ηth

ν

χth
ν + χs

ν

+
ηs

ν

χth
ν + χs

ν

Substituting by ηth
ν

χth
ν

= Bν(T ) and ηs

χs = J̄ν , we obtain,

Sν =
χth

ν

χth
ν + χs

ν

Bν(T ) +
χs

ν

χth
ν + χs

ν

J̄ν

Then,

Sν = ϵν Bν + αν J̄ν Non-local problem J̄ν(r̄) =
1

4π

∮
Iν(r̄ , n̄′) ϕ(ν − ν′) dΩ′

n̄′

ϵν and αν = 1 − ϵν are the probability of thermal and scattering emission.

If ⇒ ϵν = 1 → Sν = Bν(T ) → Great simplification!
but not valid for lines!

In mixed cases, RT is an integro-differential equation

1
c

∂Iν
∂t

+
(

n̄ · ∇̄
)

Iν =
(

χth
ν + χs

ν

)
(Sν − Iν)
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Equation of Radiative Transfer

(
n̄ · ∇̄

)
Iν =

(
χth

ν + χs
ν

)
(Sν − Iν)

Spherical Symmetry

dI
dL

=
∂

∂ r
Iν(r , µ)

dr
dL

+
∂

∂ θ
Iν(r , µ)

dθ

dL

dr = dL cos θ →
dr
dL

= cos θ = µ

−r dθ = sin θ →
dθ

dL
= −

sin θ

r
(dθ < 0). Then, as Iν(r , µ),

∂

∂θ
=

∂

∂µ

∂µ

∂θ
= − sin θ

∂

∂µ

sin2 θ = 1 − µ2

Assuming that
∂Iν
∂t

≡ 0 → steady state

⇒ n̄ · ∇Iν ≡ µ
∂

∂ r
Iν +

1 − µ2

r
∂

∂ µ
Iν

µ
∂

∂r
Iν +

1 − µ2

r
∂

∂µ
Iν = κν(r) [ Sν(r) − Iν ]
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Figure 12: The plane parallel case: when L/r << 1 ⇒ θ1 ≈ θ2.

Then dI
dL = ∂

∂ r Iν(r , µ) dr
dL +�����∂

∂ θ Iν(r , µ) dθ
dL and dr

dL = µ

Thus, the left-hand side term of the RT equation can be approximated by

n̄ · ∇̄Iν(r̄ , µ) ≡ µ
d
dr

Iν(r , µ)

and, we obtain,

µ
d
dr

Iν = κν(r) ( Sν(r) − Iν ) where Iν ≡ Iν(r , µ)
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The Optical Depth

Optical depth measures the attenuation of the radiant power
in a medium caused by absorption and scattering processes.

τν = −
∫

κν(r) dr is dimensionless

τ = 0 in the outermost atmospheric layer, increasing
opposite to r or z coordinate.

if τν < 1 optically thin medium
if τν > 1 optically thick medium

The photosphere of a star is defined as the surface where its
optical depth is 2/3 (grey atmosphere model). This
photospheric border is sometimes adopted at τ = 1
(arbitrary convention).

At τ5000 = 1, T = Teff , r = R⋆

Note: the optical depth of a given medium will be different
for different wavelengths of light.
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Thus, the RT equation

µ
d
dr

Iν = κν(r) [ Sν(r) − Iν ]

can be expressed in terms of the optical depth
dτν = −κν(r) dr

µ
d

dτν
Iν = Iν − Sν

Formal solution of RT

The formal solution can be obtained using the
integrating multiplier method (e−τν /µ).

µ e−τν µ d
dτν

Iν = Iν e−τν /µ − Sν e−τν /µ

e−τν µ d
dτν

Iν −
1
µ

Iν e−τν /µ = −Sν e−τν /µ 1
µ

︸ ︷︷ ︸
d

dτν
(Iν e−τν /µ) = − Sν e−τν /µ 1

µ

Figure 13: Representation of
plane-parallel layers.
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Integrating over the optical depth tν ,

d(Iν(τ, µ) e−τν /µ)

∣∣∣∣τ2

τ1

= −

∫ τ2

τ1
Sν e−tν /µ dtν

µ

Iν(τ2, µ) e−τ2/µ − Iν(τ1, µ) e−τ1/µ = −

∫ τ2

τ1
Sν e−tν /µ dtν

µ

Iν(τ1, µ) e−τ1/µ = Iν(τ1, µ) e−τ2/µ +

∫ τ2

τ1
Sν e−tν /µ dtν

µ

Iν(τ1, µ) = Iν(τ2, µ) e−(τ2−τ1)/µ +

∫ τ2

τ1
Sν e−(tν −τ1)/µ dtν

µ

Then, the complete solution for outgoing radiation at τ1 is

Iν(τ1, µ) = Iν(τ2, µ) e
−

(τ2 − τ1)
µ +

∫ τ2

τ1
Sν(tν) e

−
(tν − τ1)

µ dtν

µ
.

Figure 14: Path of an
outgoing light beam in direction
µ = cos θ from a layer τ2 to a
less dense layer τ1.
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The formal solution

attenuation by ∆τν︷ ︸︸ ︷ attenuation by (tν − τ2)/µ (a way to go)︷ ︸︸ ︷
Iν(τ1, µ) = Iν(τ2, µ) e

−
(τ2 − τ1)

µ +

∫ τ2

τ1
Sν(tν) e

−
(tν − τ1)

µ dtν

µ︸ ︷︷ ︸
contribution of the radiation from layer τ2

︸︷︷︸
source function at optical depth tν

This equation is not a real solution because the source
function depends on the unknown intensity of the radiation
(i.e., Jν).

Sν = ϵν Bν + αν J̄ν

We will show later how to solve this problem in static and
expanding stellar atmospheres. Figure 15: Path of an

outgoing light beam in direction
µfrom a τ2 layer to a less dense
layer at τ1. 24 / 52



Boundary Conditions

To explicitly solve the RT equation,

Iν(τ1, µ) = Iν(τ2, µ) e
−

(τ2 − τ1)
µ +

∫ τ2

τ1
Sν(tν) e

−
(tν − τ1)

µ dtν

µ

we need to provide boundary conditions to Iν(τ2, µ) .

These depend on the physical properties of the layers.

If boundary layers are transparent or opaque

If the adjacent surroundings is the vacuum or there is incident radiation
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Iν(τ1, µ) = Iν(τ2, µ) e
−

(τ2 − τ1)
µ +

∫ τ2

τ1
Sν(tν) e

−
(tν − τ1)

µ dtν

µ

Optical thin medium τ << 1

For τ1 ≡ 0 Iν(0, −µ) ≡ 0

no incident radiation

τ2 = T and Iν(T , µ) = I+
ν (µ) (known)

Iν(0, µ) = I+
ν (µ) e−T/µ +

∫ T

0
Sν(tν) e

−
tν

µ dtν

µ

Figure 16: Abel 39

Case of a circumstellar ring or
shell. 26 / 52



Optical thick medium τ >> 1

Iν(τ1, µ) = Iν(τ2, µ) e
−

(τ2 − τ1)
µ +

∫ τ2

τ1
Sν(tν) e

−
(tν − τ1)

µ dtν

µ

τ2 = T with T >> 1

Iν(T , µ) = Bν(T ) or a diffusion equation

if τ2 → ∞

lim
τν →∞

Iν(τν , µ) e
−

(τ2 − τ1)
µ = 0

(a semi-infinity approximation)

The emergent intensity at τν = 0
is expressed as

Iν(0, µ) =

∫ ∞

0
Sν(tν) e

−
tν

µ dtν

µ
.
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A semi-infinity plane-parallel layer

Iν(0, µ) =

∫ ∞

0
Sν(tν) e

−
tν

µ dtν

µ
.

The emergent intensity is the Laplace transform of
the source function if the source function is known.

Example: Sν = a τ + b then

Iν(0, µ) = a µ + b

Limb darkening law Figure 17: Solar photosphere
showing the limb darkening on
January 3, 2011 (SDO/HMI takes
the solar image
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The Momentum of the Radiation Field

Iν(r , µ) contains detailed angular information that can make the radiative transfer
problem very hard to solve. Therefore, Iν(r , µ) can expand into spherical harmonics
Disadvantage → one must specify an axis of reference An equivalent method is to
expand into tensor moments For a non-relativistic case, the radiative transfer problem
is treated in the scalar moment formalism.

The kth-moment of the radiation field is defined as

Mk
ν(r̄) =

∮
I(r̄ , n̄) µk dΩn̄∮

dΩn̄

.

In spherical coordinates, the solid angle is

dΩn̄ = sin θ dθ dϕ = −dµ dϕ and

∮
dΩn̄ = 4 π

where θ is the co-latitude (from the pole), ϕ is the longitude and µ = cosθ.

Mk
ν (⃗r) = 1

4 π

∮
Iν(r̄ , n̄) µndΩn̄ → Mk

ν(r̄) = 1
2

∫ 1
−1 Iν(r̄ , µ) µndµ
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the first three kth moments of the radiation field, which are scalar functions in
spacetime,

For k = 0 Mo
ν(r̄) = Jν with Jν = 1

2

∫ 1
−1 Iν(r̄ , µ) dµ

→ Mean Intensity

For k = 1 M1
ν(r̄) = Hν with Hν = 1

2

∫ 1
−1 Iν(r̄ , µ) µ dµ

→ Eddington flux

For k = 2 M2
ν(r̄) = Kν with Kν = 1

2

∫ 1
−1 Iν(r̄ , µ) µ2 dµ

→ related with the radiation pressure

The observed flux Fν = 4 Hν (the astrophysical flux)

Fν = 4 π Hν (density flux)

We also use to work with frequency-integrated moments of the distribution function
and for the source function, namely

Mk ≡

∫ ∞

0
Mk

ν dν S ≡

∫ ∞

0
Sν dν
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Equations of the k th Moments of the Radiation Field

Mk
ν(r̄) =

1
2

∫ 1

−1
Iν(r̄ , µ) µkdµ

µ
∂

∂ r
Iν(r̄ , µ) +

1 − µ2

r
∂

∂ µ
Iν(r̄ , µ) = −χν (Iν(r̄ , µ) − Sν(r̄))

multiplying both sides by 1
2 µk and integrating over dµ,

The first left-hand side is

1
2

∫ 1

−1
∂

∂ r
Iν(r̄ , µ) µk+1 dµ =

1
2

∂

∂ r

∫ 1

−1
Iν(r̄ , µ) µk+1 dµ ≡

∂

∂ r
Mk+1

ν (r̄)
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The second and third terms are

1
2

∫ 1

−1
1 − µ2

r
∂

∂ µ
Iν(r̄ , µ) µk dµ

Integrating by parts

1
2 r

∫ 1

−1
∂

∂ µ
Iν(r̄ , µ) µk dµ =

1
2 r

µk Iν(r̄ , µ) dµ
∣∣ 1

−1
−

k
2 r

∫ 1

−1
Iν(r̄ , µ) µk−1 dµ

1
2 r

∫ 1

−1
∂

∂ µ
Iν(r̄ , µ) µk dµ =

1
2 r

[1(k) Iν(r̄ , 1) − (−1)k Iν(r̄ , −1)] −
k
r

Mk−1
ν

The third term is very similar

−1
2 r

∫ 1

−1
∂

∂ µ
Iν(r̄ , µ) µk+2 dµ =

1
2 r

[1(k+2) Iν(r̄ , 1)−(−1)(k+2) Iν(r̄ , −1)]−
k + 2

r
Mk+1

ν

1
2

∫ 1

−1
1 − µ2

r
∂

∂ µ
Iν(r̄ , µ) µk dµ =

k + 2
r

Mk+1
ν −

k
r

Mk−1
ν
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The right-hand side can be written as

−
1
2

∫ 1

−1
χν(r̄) Iν(r̄ , µ) µkdµ +

1
2

∫ 1

−1
χν(r̄) Sν(r̄) µkdµ =

−χν(r̄)Mk
ν −

1
2

∫ 1

−1
χν(r̄) Sν(r) µkdµ

Assuming χν(r̄) is isotropic!

if k = 0 or k even ⇒ 1
2 χν Sν(r)

∫ 1
−1 µkdµ = 1

2 χν Sν(r) µk+1

k+1

∣∣1
−1

if k is odd, ⇒ 1
2 χν(r̄) Sν(r)

∫ 1
−1 µkdµ = 0

∂
∂ r Mk+1

ν + k+2
r Mk+1

ν − k
r Mk−1

ν = −χν(r̄) Mk
ν + 1

2 χν(r̄) Sν(r) µk+1

k+1
∣∣1
−1
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The First Equations of Moments
∂

∂ r
Mk+1

ν +
k + 2

r
Mk+1

ν −
k
r

Mk−1
ν = −χν Mk

ν +
1
2

χν Sν(r)
µk+1

k + 1

∣∣1
−1

For k = 0 → ∂ Hν
∂ r + 2

r Hν = −χν Jν + χν Sν(r)

Integrating over frequencies

1
r2

∂(r2H)
∂ r

=

∫ ∞

0
χν (Sν − Jν(r)) dν

and assuming radiative equilibrium∫ ∞

o
χν Jν dν =

∫ ∞

o
χν Sν dν

∇̄H = 0

and χ(r) ̸= χν(r) frequency-independent (grey atmosphere) → J = S
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The First Equations of Moments
Spherical Symmetry

for k = 0

1
r2

d(r2H)
d r

= 0

H =
C
r2

Flux is diluted!

for k = 1

dK
dr

+
3 K − J

r
= −χ(r) H

Plane-parallel case

for k = 0

dH
dr

= 0

H = C

The integrated flux is constant

for k = 1

dK
dr

= −χ(r̄) H

Comparing the results, the plane-parallel approximation satisfies,

3 K = J

35 / 52



The Mean Intensity and Radiation Energy Density
The mean intensity Jν is the average of the monochromatic intensity over the solid
angles,

Jν(r̄ , t) =
1

4π

∮
Iν(r̄ , n̄, t) dΩ.

To understand its physical meaning, it is convenient to calculate the spectral energy
density (per unit frequency) of the radiation field.

This spectral energy density is the energy per unit volume d3 r̄ and dt,
δEν = Iν(r̄ , n̄, t) dν ds cos θ dt dΩ̄n̄

Uν(r , t) = h ν

∮
h3ν2

c3 Φν(r , µ, t) dΩn̄,

Then, using the relation Iν ≡ h4 ν3

c2 Φν(r̄ , n̄, t), we have

Uν(r̄ , t) ≡
1
c

∮
Iν(r̄ , n̄, t) dΩn̄ =

4 π

c
Jν(r̄ , t).

the density spectral energy.
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Radiative Energy Flux

The energy per unit of time and frequency
interval that passes through the surface
dsn̄ ⊥ n̄ is given by,

∆E
dt dν

= Iν(r̄ , n̄) dΩn̄ dsn̄

If the surface is ⊥ n̄′ then

∆E
dt dν

= Iν(r̄ , n̄) dΩn̄ dsn̄′ cos(n̄, n̄′)

The flux in the direction n̄′ is the sum of
the energy that passes through the surface
over all directions n̄ in the time dt,

F̄n̄′ =

∮
Iν(r̄ , n̄) cos(n̄, n̄′) dΩn̄

The flux depends on the direction n̄′.

If the surface is ⊥ n̄, we have

Fx ≡
∮

Iν(r̄ , n̄) µx dΩn̄;

Fy ≡
∮

Iν(r̄ , n̄) µy dΩn̄

Fz ≡
∮

Iν(r̄ , n̄) µz dΩn̄

since cos(n̄, n̄′) = µx µ′
x + µy µ′

y + µz µ′
z

F̄n̄′ = Fx µ′
x + Fy µ′

y + Fz µ′
z
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Transfer of momentum. The Radiation Pressure Tensor
F̄ · ds̄ is the net rate of radiant energy flow per unit frequency interval, at time dt,
across the surface element ds. This represents the pressure exerted on a surface due
to the momentum exchange between the radiation field and matter.

Let’s compute the components of the moment transported in an arbitrary direction
n̄ ≡ (µx , µy , µz ) through the surface element ⊥ to each coordinate axis.

dsx = ds(1, 0, 0) is a surface element ⊥ to the x-axis

The energy and momentum of radiation travelling in the direction n̄ that passes
through the dsx per unit of time is

Iν(r̄ , n̄) dΩn̄ µx ds 1
c Iν(r̄ , n̄) dΩn̄ µx ds

and their corresponding (x , y , z) components through the surface element dsx are,

I(r̄ , n̄) dΩn̄ ds µx µx

c
;

I(r̄ , n̄) dΩn̄ ds µx µy

c
;

I(r̄ , n̄) dΩn̄ ds µx µz

c
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Integrating over all the incoming directions n̄, we derive the components of the tensor
pressure in the direction x ,

Pxx ≡
1
c

∮
I(r̄ , n̄) µx µx dΩn̄; Pxy ≡

1
c

∮
I(r̄ , n̄) µx µy dΩn̄; Pxz ≡

1
c

∮
I(r̄ , n̄) µx µz dΩn̄

Similarly for dsy and dsz ; we have (Pyx , Pyy , Pyz ) and (Pzx , Pzy , Pzz )

Pyx =
1
c

∮
I(r̄ , n̄) µy µx dΩn̄; Pyy =

1
c

∮
I(r̄ , n̄) µy µy dΩn̄; Pyz =

1
c

∮
I(r̄ , n̄) µy µz dΩn̄

Pzx =
1
c

∮
I(r̄ , n̄) µz µx dΩn̄; Pzy =

1
c

∮
I(r̄ , n̄) µz µy dΩn̄; Pzz =

1
c

∮
I(r̄ , n̄) µz µz dΩn̄

This way, the pressure tensor,

P =

(
Pxx Pxy Pxz
Pyx Pyy Pyz
Pzx Pzy Pzz

)
where Pxy = Pyx , Pxz = Pzx , and Pyz = Pzy .
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The Scalar Pressure

Pij = 1
c
∮

I(r̄ , n̄) µi µj dΩn̄

for example → Pzz = 1
c
∮

I(r̄ , n̄) µ 2
z dΩn̄

Prad = 1
3 c
∮

(Pxx + Pyy + Pzz) dΩn⃗ = 1
3 c
∮

I (⃗r , n⃗) dΩn⃗

Prad = 4 π
3 c J
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The Radiation Force
The negative gradient of the pressure tensor is the radiation force per unit volume.
The x-component of this force F(n̄) is given by

Fx = −(∇̄P)x = −∇̄(Pxx , Pxy , Pxz )

−(∇̄P)x = −
1
c

∮ (
∂I(r̄ , n̄)

∂ x
µx µx +

∂ I(r̄ , n̄)
∂ y

µx µy +
∂I(r̄ , n̄)

∂ z
µx µz

)
dΩn̄

F(n̄)x =
1
c

∮
µx χν (Iν − Sν) dΩn̄

Similarly, for the other two components of the force,

F(n̄)y =
1
c

∮
µy χν (Iν − Sν) dΩn̄

F(n̄)z =
1
c

∮
µz χν (Iν − Sν) dΩn̄
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Summary

Jν(r̄) = 1
4 π

∮
Iν(r̄ , n̄) dΩn̄

Mean intensity

Uν(r̄ , t) = radiation energy
volume = 4 π

c Jν(r̄ , t)
Energy density

Pν(r̄) = 1
c

∮
Iν(r̄ , n̄) µ2 dΩn̄

Radiation pressure

pressure = force
area = d momentum(E/c)

dt
1

area

F (n̄)x = 1
c

∮
µx χν (Iν − Sν) dΩn̄

Radiation force

It depends on the density flux F = C/r2,
χ(r̄) and the orientation of the surface
with respect to force.

Figure 18: LightSail 2 spacecraft, launched on June
25, 2019, and reentered Earth’s atmosphere on Nov. 17,
2022. It used sunlight alone to change its orbit.
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Numerical Methods

Integral methods

Statistical methods

Finite difference methods

Finite element methods

Mixed methods
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The Feautrier Method

Example for the plane parallel case: µ dIν
dτν

= Iν − Sν

In the 0 ≤ µ ≤ 1 we have two first order equations

±µ
dI (τν , ±µ, ν)

dτν
= I (τν , ±µ, ν) − S (τν , ν)

We define the symmetric and anti-symmetric
variables of the radiation field:

U (τν , µ, ν) =
1
2

[I (τν , µ, ν) + I (τν , −µ, ν)]

V (τν , µ, ν) =
1
2

[I (τν , µ, ν) − I (τν , −µ, ν)]

Combining both equations

µ
dVν

dτν
= Uν − Sν

µ
dUν

dτν
= Vν
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Eliminating Vν , we obtain a second order differential equation

µ2 d2Uν

dτ2
ν

= Uν − Sν

where

S (τν , ν) = αJ (ν , ν) + β

J (τν , ν) =
1
2

∫ 1

0
I (τν , −µ, ν) dµ +

1
2

∫ 1

0
I (τν , µ, ν) dµ ≡

∫ 1

0
U (τν , µ, ν) dµ

Now, the source function is in terms of U (τν , µ, ν)

S (τν , ν) = α

∫ 1

0
U (τν , µ, ν) dµ + β

µ2 d2Uν

dτ2
ν

= Uν − α

∫ 1

0
U (τν , µ, ν) dµ + β
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Boundary conditions

From first-order equations:

µ
dVν

dτν
= Uν − Sν

µ
dUν

dτν
= Vν

Outer border

I (0, −µ, ν) ≡ 0 ⇒ U (0, µ, ν) = V (0, µ, ν)

⇒ µ
dUν

dτν

∣∣∣
τmin

= U (τmin, µ, ν) .

Inner border τν = τmax

I+ = I (τmax, µ, ν) i.e. Bν(T )

U (τmax, µ, ν)+V (τmax, µ, ν) = I+ (τmax, µ, ν)

µ
dUν

dτν

∣∣∣
τmax

= I+ − U (τmax, µ, ν) .
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Finite Difference Equations

S (τν , ν) = αJ (ν , ν) + β

Jd =
4∑

i=1

wi Ud (µi ) =
4∑

i=1

wi Udi

Sd = α

4∑
i=1

wi Udi + β = α (w1Ud1 + w2Ud2 + w3Ud3 + w4Ud4) + β

Building the grids
τ = (τ1, τ2, τ3, ..., τd−1, τd , τd+1, ..., τD)
µd = (µ1, µ2, ..., µm, ..., µM)
νd = (ν1, ν2, ..., νn, ..., νN)
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The first derivative is evaluated at τd−1/2

dU
dτ

∣∣∣
d+1/2

≈
∆U
∆τ

∣∣∣∣
d+1/2

=
∆Ud+1/2

∆τd+1/2
=

Ud+1 − Ud
τd+1 − τd

.

dU
dτ

∣∣∣
d−1/2

≈
∆U
∆τ

∣∣∣∣
d−1/2

=
∆Ud−1/2

∆τd−1/2
=

Ud − Ud−1
τd − τd−1

Instead, the second derivative is defined on the grid.

µ2
i

∆τd

[
Ud+1,i − Ud,i

∆τd+1/2
−

Ud,i − Ud−1,i

∆τd−1/2

]
= Ud,i − α

∑
j

wj Ud,j − β

Then, we have

−
(

−
µ2

i
∆τd ∆τd−1/2

)
Ud−1,i

+

(
−

µ2
i

∆τd ∆τd+1/2
−

µ2
i

∆τd ∆τd−1/2
+
∑

j

αwj − 1

)
Ud,i

−
(

−
µ2

i
∆τd ∆τd+1/2

)
Ud+1,i = −β

The same can be done for the boundary conditions.

−Ad Ud−1+Bd Ud −Cd Ud+1 = Ld

Ud =

 Ud1
Ud2
Ud3
Ud4
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Examples of some matrix arragements

Ad =


− µ2

1
∆τd ∆τd−1/2

0 0 0

0 − µ2
2

∆τd ∆τd−1/2
0 0

0 0 − µ2
3

∆τd ∆τd−1/2
0

0 0 0 − µ2
4

∆τd ∆τd−1/2



Bd =

 B∗
1 + αw1 αw2 αw3 αw4

αw1 B∗
2 + αw2 αw3 αw4

αw1 αw2 B∗
3 + αw3 αw4

αw1 αw2 αw3 B∗
4 + αw4


Boundary conditions

A1 ≡ 0 CD ≡ 0
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Forward Elimination and Backsubstitution

−Ad Ud−1 + Bd Ud − Cd Ud+1 = Ld

Border conditions
A1 ≡ 0 CD ≡ 0

B1 U1 − C1 U2 = L1

U1 = D1 U2 + V1

{
D1 = B−1

1 C1
V1 = B−1

1 L1

Ud = Dd Ud+1 + Vd

where {
Dd = [Bd − Ad Dd−1]−1 Cd
Vd = [Bd − Ad Dd−1]−1 [Ld + Ad Vd−1

]
From the inner boundary condition UD ≡ VD
Substituting in

Ud = Dd Ud+1 + Vd
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Feautrier Standard Solution Scheme

Define a grid of depth (τ), angle (µ)
and frequency (nu)
Depth by depth, define the matrix
elements A, B, C and keep the values
Go forward layer by layer
Use the inner boundary conditions
Use the recurrent equation to
compute
Ud = Dd Ud+1 + Vd

Compute U(τ, ν) and the source
function.
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Behaviour of the Source Function
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