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Abstract

Structures in circumstellar matter reflect both fast processes and quasi-equilibrium states. A geometrical diversity
of emitting circumstellar matter is observed around evolved massive stars, in particular around B[e] supergiants.
We recapitulate classical analytical tools of linear and nonlinear potential theory, such as Cole–Hopf
transformation and Grad–Shafranov theory, and develop them further to explain the occurrence of the
circumstellar matter structures and their dynamics. We use potential theory to formulate the nonlinear
hydrodynamical equations and test dilatations of the quasi-equilibrium initial conditions. We find that a wide range
of flow patterns can basically be generated and the timescales can switch, based on initial conditions, and lead to
eruptive processes, reinforcing that the nonlinear fluid environment includes both quasi-stationary structures and
fast processes like finite-time singularities. Some constraints and imposed symmetries can lead to Keplerian orbits,
while other constraints can deliver quasi-Keplerian ones. The threshold is given by a characteristic density at the
stellar surface.

Unified Astronomy Thesaurus concepts: Hydrodynamics (1963); Analytical mathematics (38); Stellar winds
(1636); Circumstellar matter (241)

1. Introduction

During their post-main-sequence evolution, massive stars
(M> 8M☉) can undergo phases of enhanced mass loss and
material ejections, which may lead to the formation of
circumstellar shells and disks. One group of objects is
particularly peculiar. These are the B[e] supergiants. The early
findings by Zickgraf et al. (1985) of a hybrid character of the
UV and optical spectra have led to the assumption of a two-
component wind emanating from these objects with a classical
line-driven wind in polar direction along with a much slower,
cool, and dense equatorial (disk-forming) outflow in equatorial
direction.

Intense infrared excess emission points to the presence of
significant amounts of hot circumstellar dust (Zickgraf et al.
1986), which imprints its specific emission features on the
infrared spectra of these objects (Kastner et al. 2010). The
existence of a disk-shaped dusty structure has been inferred
from optical linear polarization observations (Magalhaes 1992;
Melgarejo et al. 2001) and has later on been reinforced for a
few close-by Galactic objects by optical interferometric
observations (Domiciano de Souza et al. 2007; Borges
Fernandes et al. 2011; Millour et al. 2011; Cidale et al. 2012;
Wheelwright et al. 2012a).

A warm and dense circumstellar disk provides an ideal
environment for the formation of molecules, and rovibrational
emission from hot molecular gas has been detected in the near-
infrared from CO (McGregor et al. 1988; Morris et al. 1996;
Miroshnichenko et al. 2005; Oksala et al. 2012; Wheelwright
et al. 2012b; Kraus et al. 2013; Oksala et al. 2013; Kraus et al.
2014; Muratore et al. 2015; Sholukhova et al. 2015; Kraus et al.
2016; Kourniotis et al. 2018; Kraus et al. 2020) as well as from

SiO (Kraus et al. 2015), and in the optical possibly from TiO
(Zickgraf et al. 1989; Torres et al. 2012; Kraus et al. 2016;
Torres et al. 2018) in a large number of objects (for a detailed
description we refer the reader to the review by Kraus 2019).
The detection of significant enrichment of the disk material in
the isotope 13C, traced by intense emission of the molecule
13CO, reinforces that the circumstellar matter of B[e] super-
giants must have been released from the stellar surface and
cannot be a remnant from star formation (Kraus 2009;
Liermann et al. 2010).
Several theoretical approaches have been presented to

explain the formation of dense outflowing disks from B[e]
supergiants. Bjorkman & Cassinelli (1993) proposed that the
winds emanating from the polar regions of rapidly rotating
massive stars are bent toward the equator regions where they
collide forming the so-called wind-compressed disk. This
analysis considered a spherical shape of the star, but the
inclusion of the non-radial forces occurring on the rotationally
distorted stellar surface seems to prevent the formation of a
wind-compressed disk (Owocki et al. 1996).
Rapid stellar rotation facilitates another mechanism that

might be considered, the rotation-induced bistability (Pelupessy
et al. 2000). Due to the decrease in surface temperature from
the pole to the equator caused by the rotation of the star (known
as gravity darkening), the threshold temperature of ∼25,000 K
for recombination of Fe IV into Fe III might be crossed. Because
Fe III has significantly more lines suitable to drive the wind, a
substantial increase in mass flux can be expected at lower
temperature, that is, toward equatorial regions (Vink et al.
1999). However, the density enhancement that can be achieved
by this scenario remains a factor of 10–100 below the
expectations from observations. When the bistability mech-
anism is combined with the slow-wind solutions discovered by
Curé (2004), the situation improves and a higher density
contrast can be generated in the vicinity of the star (Curé et al.
2005), but for the price of an equatorial wind velocity that is

The Astrophysical Journal, 963:131 (10pp), 2024 March 10 https://doi.org/10.3847/1538-4357/ad1e53
© 2024. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-5165-6331
https://orcid.org/0000-0001-5165-6331
https://orcid.org/0000-0001-5165-6331
https://orcid.org/0000-0002-4502-6330
https://orcid.org/0000-0002-4502-6330
https://orcid.org/0000-0002-4502-6330
mailto:dieter.nickeler@asu.cas.cz
http://astrothesaurus.org/uat/1963
http://astrothesaurus.org/uat/38
http://astrothesaurus.org/uat/1636
http://astrothesaurus.org/uat/1636
http://astrothesaurus.org/uat/241
https://doi.org/10.3847/1538-4357/ad1e53
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad1e53&domain=pdf&date_stamp=2024-03-07
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ad1e53&domain=pdf&date_stamp=2024-03-07
http://creativecommons.org/licenses/by/4.0/


10–20 times higher than what has been inferred from
observations.

The effects of gravity darkening have also been utilized in
computations of the latitude-dependent ionization structure in
the winds of B[e] supergiants, and Kraus (2006) has shown
that, despite the fact that rapid rotation alone leads to a lower
wind density in equatorial directions as was shown by Owocki
et al. (1996) and Maeder & Desjacques (2001), the wind
material (in particular hydrogen and elements with a similar
ionization potential) can still recombine in the equatorial wind
region of these luminous objects leading to a zone of neutral
gas confined to the equatorial plane, in which also molecules
and dust can form. The existence of such neutral (in hydrogen)
zones (or disk-like structures) has been concluded from the
analysis of the observed line luminosity of the [O I] lines that
arise in these disks (Kraus et al. 2007). Follow-up 2D models
revealed that such recombination scenarios require very high
equatorial stellar mass-loss rates (Zsargó et al. 2008). In a
different approach of 2D dense, viscous outflowing disks it was
found that viscous heating dominates the innermost disk
regions leading to extremely high temperatures within the disk
midplane and to instabilities with significant waves or bumps in
density and temperature (Kurfürst et al. 2018).

Many new observations have been carried out in the past years
providing clearer insight with respect to the density distribution
and the dynamics within the circumstellar (disk) matter. In
particular, it has been found that the circumstellar material is
confined in a series of rings, arcs, or spiral-arm-like structures
revolving around the central object on (quasi-)Keplerian orbits,
rather than being spread over a disk in the classical picture (e.g.,
Kraus et al. 2010; Millour et al. 2011; Aret et al. 2012; Kraus et al.
2016; Maravelias et al. 2018; Torres et al. 2018; Kraus et al.
2023). The arrangement of these rings is thereby unique for each
object (Maravelias et al. 2018), and each ring can have a different
density that does not necessarily follow the usual radial
distribution expected in an outflow. Moreover, these rings can
have gaps or inhomogeneities, and they can be either stable in
time (Kraus et al. 2016, 2023) or display temporal variabilities
(Maravelias et al. 2018; Torres et al. 2018) including fading
(Kraus et al. 2020), complete disappearance (Liermann et al.
2014), but occasionally also a sudden appearance of a new
structure (Oksala et al. 2012) possibly caused by a pileup of
matter in a steadily decelerating outflow (Kraus et al. 2010). These
findings indicate that the mass loss from these stars is not a
smooth process, but could be related to ejection phases, possibly
triggered by instabilities acting in the strongly inflated envelopes
of such massive and luminous objects (Glatzel & Kiriakidis 1993;
Kiriakidis et al. 1993; Glatzel & Mehren 1996).

Motivated by this great diversity of circumstellar environ-
ments of B[e] supergiants ranging from stationary density
distributions in the form of rotating rings with sometimes
alternating densities, or arc-like features, to decelerating
equatorial outflows with sudden pileup of matter, and the
deficiency of existing models to describe them, we develop in
this paper new perspectives with different hydrodynamical
scenarios that might help in understanding their formation1 and
stationary structure. In particular, the formerly discussed
scenarios and phenomena should be interconnected with basic,
generic properties of fluid dynamics. We want to consider the
following open questions from an abstract perspective:

1. How can a stationary, ideal fluid representation (without
dissipative effects) of persistent matter (stable, quasi-
stationary rings, arcs, complete, or incomplete spiral
structures) be constructed?

2. How can quasi-stationary mass distributions and prob-
ably time-dependent flows (e.g., in the form of episodic
mass loss of the central star) appear together?

3. How can simplified single-fluid time-dependent and time-
independent (stationary) velocity fields be constructed for
such abovementioned cases, if not many detailed physical
parameters are known?

4. Do such time-dependent velocity fields exist at all for a
stationary density distribution? What is their nature?

The paper is structured in the following way: in Section 2,
we present the stationary 2D solution techniques but also the
transition to nonstationary and 3D problems within incom-
pressible ideal hydrodynamics (HD). In Section 3, we derive a
nonlinear Schrödinger-type equation as an equivalent formula-
tion of the compressible HD equations. In Section 4, we
analyze a general 3D compressible flow on the basis of
stationary stellar wind solutions. Our results are discussed and
our conclusions are summarized in Section 5.

2. Incompressible HD and Blow-up Solutions

2.1. Basic Equations of Ideal HD

The scenarios described in the introduction will be treated by
using the basic equations of HD. These are given by the mass
continuity equation, Equation (1), and the Euler equation,
Equation (2),

· ( ) ( )v
t

0, 1
r

r¶
¶

+ =

⎛
⎝

⎞
⎠

·( ) ( )v v g
v

t
p , 2r r ¶

¶
+ = - +

in which ρ is the mass density, v the gas velocity, p is the gas
pressure, which may include also the radiation pressure given
that it can be assumed to be isotropic2, and g=−∇f is the
gravitational acceleration of the star with the gravitational
potential f. Self-gravitation effects of the circumstellar matter
are neglected. We focus on systems in which viscosity can be
neglected, meaning that the length scales of the pressure force
are much larger than the so-called deflection length, and the
flows are supersonic but not highly supersonic (i.e., no shocks
involved, see Frank et al. 1992).
To allow for a profound investigation of the physical aspects,

we will split our analysis into two distinct physical extremes:
incompressible velocity fields (Section 2.2) and irrotational
potential velocity fields (Section 3). One should be aware of the
fact that the incompressibility condition ∇ · v= 0 is neither
valid for classical viscous disk models, nor for classical wind
solutions, as these usually assume isothermy. Our incompres-
sibility model is not isothermal, and it makes shocks less likely
to occur.

1 Even if a complete formation scenario cannot be provided by this analysis,
we present possible physical trigger mechanisms.

2 The radiation pressure can be assumed to be isotropic in the circumstellar
matter around B[e] supergiants, which consists of significantly optically thick
material. Otherwise, the non-isotropic part of the radiation pressure is neglected
in our pure HD model.
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2.2. Stationary 3D Incompressible Flows

An interesting case that has emerged from the observations is
the (presumably) Keplerian rotating rings detected around the
B[e]SG star LHA 120-S 73 (Kraus et al. 2016). These rings did
not show any measurable radial motion within the observation
period spanning 16 yr, justifying the assumption of a quasi-
stationary model, i.e., time-dependent changes of physical
quantities are small and can be neglected. Moreover, due to the
preferential rotational and relaxed motion of the gas along
closed orbits, the compressibility of the gas is negligible
meaning that ∇ · v= 0. In this case, the mass conservation
Equation (1) simplifies to

· ( )v 0, 3r =

implying that the flow is always perpendicular to the gradient
of the density (v⊥∇ρ), respectively, the density is constant
along streamlines.

We now introduce the streaming vector (or auxiliary flow
vector, Nickeler & Fahr 2005; Nickeler et al. 2006) w via

( )w v 4r=

so that

· · ( )w w0 0. 5r =  =

The total pressure, or as we will call this in the following, the
Bernoulli pressure Π, is defined by

( )v wp p
1

2

1

2
. 62 2rP = + = +

Applying the identity

⎛
⎝

⎞
⎠

·( ) ( ) ( )w w w w w
1

2
72  ´ ´= -

to the stationary Euler equation, (Equation (2), and the
definitions for the streaming vector in Equations (4)–(6), the
resulting momentum equation in 3D can be written in the form

( ) ( )w w . 8r f ´ ´ P = -

Equations (5) and (8) form the set of incompressible HD
equations that need to be solved.

2.2.1. Solutions in 2D

Due to flat or disk-like structuring and concentration of the
matter around the star, we assume that the material is confined
in a thin sheet around the equatorial plane. In general,
circumstellar disks can be assumed to be symmetric around
the midplane, having their maximum density and pressure
along z= 0 so that ∂/∂z= 0. Our analysis is restricted to the x–
y plane and fringe effects are neglected. The investigated
scenario is not intended to generate an outflowing disk in the
classical sense, but to find representations for revolving rings or
arcs in a quasi-stationary state. In the limit, we assume a purely
azimuthal flow and use a different geometry (basically 2D in
Cartesian components, i.e., (x, y)= (R, Φ)), where in contrast
most works about disks use the (R, z) coordinate system (i.e.,
∂/∂Φ= 0).

To satisfy the mass conservation equation, Equation (5), we
define the stream function ψ=ψ(x, y), the streaming vector
w=∇ψ × ez, and the mass density ρ= ρ(ψ). In the general case,
∇ψ and ∇f are not parallel to each other almost everywhere,
such that the stream function ψ and the gravitational potential f

can be regarded as coordinates replacing x and y, and Π is
consequently an explicit function of ψ and f. Inserting these
relations into the momentum equation, Equation (8), and
expanding with respect to the basis vectors∇ψ and∇f delivers

( ) ( ), 9y y r y f  P = D -

( ) ( ). 10
y

y
f

f y y r y f   
¶P
¶

+
¶P
¶

= D -

From a comparison of coefficients we obtain one nonlinear
Poisson-like partial differential equation for the stream function
and one equation for the external gravitational potential

( ) ( ). 11
y

y
f

r y
¶P
¶

= D 
¶P
¶

= -

This set of relations is an analogy to results in magnetohydro-
static theory with gravity (Schindler et al. 1983), while the first
quasi- or nonlinear elliptic type equation has already been
found and described in HD by Stokes (1848). Formal
integration of the equation on the the right-hand side of
Equation (11) results in a relation for the Bernoulli pressure of

( ) ( ) ( ); 120r y f yP = - + P

however, this formal integration does not solve the system
completely. Inserting this Bernoulli pressure into the equation
on the left-hand side of Equation (11) delivers

( ) ( ) ( ), 130y r y f yD = - ¢ + P¢

where the prime denotes the derivative with respect to ψ.
To be able to solve this equation, it is necessary to know the

function ρ(ψ), i.e., the density as a function of the stream
function. While the stream function ψ is not known a priori, the
density along each streamline label (i.e., the value of the stream
function) must be constant, but can vary across streamlines.
With this knowledge, we are able to calculate the 2D density
structure, as we can basically choose the density function ρ= ρ
(ψ) arbitrarily. The choice of the density function implies a
nonlinear feedback on the solution of the nonlinear Laplace
equation, Equation (13). The solution of this Laplace equation
finally delivers a stream function ψ= ψ(x, y), based on which
the spatial density distribution ρ= ρ(x, y) can be computed3.
Taking the most simple, nontrivial approach given by

( ) ( )const, 14r y l¢ = - =

and assuming that Π0 is constant, results in

( ). 15
y

y lf
¶P
¶

= D =

The relation between the density and the stream function,
Equation (14), is chosen in such a way that the monotonicity of
the density function, and therefore a unique relation, i.e., the
bijective character of the density function, is guaranteed. We
will recognize in the following that λ controls the influence of
the gravitation on the geometry and dynamics of the flow: the
larger λ, the larger the deviation from ordinary potential flows
(see Equations (17) and (18) below).

3 We will show in Section 2.2.2 that this notion and the procedure can be
transferred also to the limiting case, for which ∇ψ ×∇f = 0, i.e., for one-
dimensional equilibria.
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To derive this influence we first of all have to facilitate the
solution of Equation (15), by switching to Wirtinger calculus
(e.g., Remmert 1991) and using the coordinates (or variables)
u := x+ iy and v := x− iy with i2=−1. Then the Poisson
equation, Equation (15) can be written as

( )GM

uv
4 , 16u vy l¶ ¶ = - *

where we inserted the definition of the gravitational potential
given by GM

R
f = - * , in which G is the gravitational constant,

M* is the mass of the central star, and where R defined as
R2= uv is the radial distance from the center of the star within
the x–y-plane, with R� R*, where R* denotes the radius of
the star.

Integration of the solution of the Poisson equation,
Equation (16), with respect to the u–v coordinates delivers
the stream function

( ) ( ) ( ) ( )GM uv u v , 171 2y l y y= - + +*
where ψ1 and ψ2 are free functions. With this stream function,
we can compute the streaming vector and the Bernoulli
pressure, where the thermal pressure p can then be calculated
by subtracting the kinetic pressure. The general solution,
Equation (17), shows an inhomogeneous part depending on the
coupling constant λ.

This simplified approach leads to a mathematical limit to a
quasi-Kepler rotation. We assume that the homogeneous part of
the general solution, Equation (17), i.e., the meromorphic part,
is zero. Therefore the solution for ψ and the derived streaming
vector can be used to calculate the (rotational) velocity of the
gas around the star

⎡
⎣

⎤
⎦
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( ) ( )

w eGM R
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R
e
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R
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l
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where we have inserted for the density function the solution of
Equation (14), i.e., ρ(ψ)=−λψ+ ρ0= λ2GM* R+ ρ0. For the
limit λ, ρ0→ 0 and ρ0/λ

2→ 0, or for ρ0= 0, the velocity is
identical to the Kepler rotation. For a vanishing integration
constant ρ0, the density at the stellar surface is given by
ρ(R*)= λ2GM*R*. While the density of the circumstellar
matter in the vicinity of the star can take small values,
depending on the choice of λ, it is not trivial to generate a
Keplerian rotating disk or ring detached from the stellar
surface.

Other cases, e.g., for large values of ρ0/λ
2, lead to strong

deviation from Kepler rotation close to the star. But, even in the
latter case, the velocity can approach Keplerian behavior for
sufficiently large values of R. It should be noted that our
approach only represents the close-by circumstellar environ-
ment, i.e., regions between the stellar surface and the first ring
or onset of the disk. The linear function chosen for the density
ρ(ψ) might be regarded as the lowest order part of a Taylor
expansion in the region of our interest of a complex density

function, and is only meant to have a prescription from a low
density, e.g., close to the star (gap), to high values (ring/disk).
The lack of information on the real radial density distribution
from observations hampers a more precise theoretical
description.
Inserting the streaming vector, Equation (18), and the density

function ρ(ψ) into the equation for the pressure function,
Equation (12), Equation (6) delivers

( )p
GM

R
G M

1

2
. 210

2 2 2
0r l= + + P*

*

If ρ0 would be zero, the density would be given by λ2GM* R,
the pressure gradient (and therefore the pressure force) would
vanish, and the motion of the gas would be purely ballistic
(Keplerian).

2.2.2. On the Existence of Π(ψ, f) for 1D Equilibria

In Section 2.2.1, we showed for two-dimensional equilibria
that the pressure Π can be expressed as a function of the scalar
fields ψ and f with

≔ ( ) ( ), 22w
y

y y f
¶P
¶

= D -W

≔ ( ) ( ), 23
f

f r y
¶P
¶

= D -

where Ωw is the vortex strength (or vorticity in 2D) associated
with the flow vector w, which is defined by Ωw≔ ∇×w and
reduces in our case to Ωw=Ωwez.
In the one-dimensional case, e.g., ∂/∂Φ= 0, where (x, y)≡

(R, Φ) (with R and Φ being the radial coordinate and the
azimuthal angle, respectively), it is not obvious at first that
there is an incompressible stationary solution, characterized by
Π(R), ψ(R) and f(R), the vorticity Ωw(R), and the mass density
ρ(R).
A possible proof has been proposed by Hornig (1996, private

communication) and presented by Fleischer (1996), which we
recapitulate for clarification: We consider the two-dimensional
space 2 with the coordinates (ψ, f), in which the solution ψ
(R), f(R) is a curve L, parameterized by R. On L the vector field
V= Vψ(ψ, f)eψ+ Vf(ψ, f)ef is given by

( ( ) ( )) ( )V R R, 24wy f = -Wy

and

( ( ) ( )) ( )V R R, . 25y f r= -f

We are looking for a potential Π on 2 such that V=∇Π|L.
We assume that there is a ε0-hose around L that does not

overlap anywhere. Then there are local coordinates (s, ε),
where s is the arc length along L and ε is the distance from L.
These are orthogonal to L, es · eε|L= 0. There is then a
decomposition of V(s)= Vs(s)es+ Vε(s)eε on L, and the
potential Π, with Π≡ 0 outside the tube, and

⎜ ⎟⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

( ) ( ˜) ˜ ( ) ( )s V s ds V s, exp 26
s

s
0

2

0
2 2òe e
e

e e
P = + -

-
e

for ε� ε0 fulfills the requirement V=∇Π|L inside the tube.
Thus, there is a pressure function Π(ψ, f) whose partial

derivatives according to Equations (22) and (23) agree with the
vorticity Ωw and the mass density ρ as functions of ψ and f.
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2.2.3. Preliminary Discussion: Do Time-dependent Incompressible
Flows Exist in 2D or 3D?

Even if a great variety of geometrical structures with regard
to flow patterns can be generated in 2D with the method
described in Section 2.2.1, we know that even quasi-stationary
structures have to undergo a formation phase that can be quite
eruptive and therefore strongly time dependent. This leads to
the question of whether quasi-stationary structures can be
preserved in case of a nonlinear time-dependent change of the
system or relax, respectively, blow-up. Or, equivalently, is it at
least possible to extend the stationary models via slight
amplitude modulation, i.e., the assumption that stationary
fields can be multiplied with a specific purely time-dependent
function, to deliver a time-dependent solution including the
stationary solution? To answer this question we focus on the
dynamical behavior in the nonlinear case. We additionally
assume that the system reacts instantaneously on nonlocal
perturbations.

The slight amplitude modulation is equivalent to posing the
question if a time separability from the spatial components
guarantees regular solutions within a small, finite-time interval.
The regularity would at least make it plausible that the
solutions are nonlinearly stable. The separability of solutions of
evolutionary equations with respect to time is possible for
many examples in continuum and quantum physics (see, e.g.,
Galaktionov & Svirshchevskii 2007). The general solutions of
such kind of equations can then be constructed by linear
superposition of multiple summands constructed by such a
separation ansatz, or by nonlinear superposition of a similar set
of summands.

We assume a time separability and take the general
incompressible 3D representation into account. Considering
the Euler equation for vanishing time derivative ∂ρ/∂t≈ 0 and
external force, and using the definition of the stream vector
(Equations (4) and (5)), we obtain

·( )

( ) ( )

v v
v

w w
w

p
t

t
. 27

r r

r

 

 ´ ´

=- -
¶
¶

 P= -
¶
¶

With w= w1(t) w0(x), and analogously for the total pressure Π,
we can rewrite the second form of the Euler Equation (27) as

( ) ( ) ( ) ( )x w w wt w w , 281 0 1
2

0 0 1 0 r ´ ´P P = -

where the dot in w1 denotes the derivative with respect to time.
Assuming that ∃(w0, Π0, ρ) with

( ) ( )w w w 290 0 0 0r ´ ´P = -

delivers

( )w w w
w

t t
, 301 1

2
1 1

10

0
P = µ  =

-

with the integration constant w10. For w10> 0, t0> 0, and t0> t
this solution constitutes a blow-up solution or finite-time
singularity for t→ t0, whereas in the limit t→−∞ the velocity
and pressure decay. We would like to emphasize that
Equation (29) does not represent an equilibrium solution, but
poses an additional constraint for the stationary part of the flow,
respectively the steady-state flow pattern.

If we take also gravity into account for the above
calculations then the time-independent form of the momentum
equation is

( )

( ) ( )

w w w e
GM

r
w w M t , 31

r0 0 0 0 2

1 1
2

1

r
r ´ ´P = - -

 P = = µ

*

*

where er is the unit vector directing radially outward from the
center of gravity, and M*(t) is the stellar mass changing over
time. For t0< 0 and t= 0 the relation w w t 11 10 0

2 = = fulfills
the condition that M*(t= 0)=M*. Then it follows that for
t> 0 and t→∞ the mass, pressure, and velocity decrease,
whereas they increase for t0> 0, t0> t, and t→ t0. While the
former can be interpreted with mass loss, the latter would imply
mass accretion. It should be noted that both scenarios only hold
for a meaningful (small) time interval, as the temporal variation
of the velocity field is given by a (pure) dilatation.
The assumptions leading to Equations (27)–(31) reflect a

nonlinear perturbation of a system, whose original stationary
(geometrical) structure should be preserved, whereas the
amplitudes of the stationary field components should vary
only slowly. The calculations show that the time-independent
field components can in fact no longer satisfy any stationary
equation, and that even the time-dependent amplitudes diverge,
i.e., develop finite-time singularities, or decay completely.
Although the dynamics are limited to incompressible flows in
these considerations, the behavior of the time-dependent
amplitudes implies an eruptive mass loss (or mass gain) of
the star. This means that within a short period of time the stellar
mass loss (or gain) would be considerably enhanced when the
system is forced by nonlinear variations (perturbations), which
can change the character of the system, driving it away from a
relaxed incompressible flow. Our analysis shows that time-
dependent incompressible flows around a stationary state
cannot exist but they lead either to a completely decaying
flow or to a blow-up.

3. Potential Flows in 3D

In contrast to the studies in Section 2.2, the time-dependent
change in the velocity field is now included. Also, we drop the
restriction to incompressible flows. Instead, we assume that the
flow is irrotational. Moreover, we replace the stream function
with a scalar potential, which allows us to easily implement the
time dependence of the velocity field.
In contrast to the stream function model used in Section 2.2,

reflecting the isocontours of the density distribution in a relaxed
flow, we now utilize a scalar velocity potential. The surfaces of
constant potential represent a family of surfaces, which has an
affinity to the family of surfaces of constant radial coordinate.
This would favor a radial outflow, instead of the more
azimuthal flows described by the stream function model in
the previous section. In case of a time dependency, the
potential describes expanding (or eventually shrinking) sur-
faces, to which the velocity vector is perpendicular, thus
pointing in a certain sense radially outward (or inward). The
density, decreasing outwards (eventually inward), should be
therefore, at least locally, diffeomorphic with respect to the
potential, as will be introduced and explained in the following.
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First of all, maintaining the condition of a stationary density
distribution, the equation of mass conservation reduces again to

· ( ) ( )v 0. 32r =

The Euler equation, Equation (2), can be rewritten, using the
identity equation, Equation (7), as

( ) ( )v v
v v

t

p

2
. 33

2

r
f ´ ´  ¶

¶
+ - = - -

Introducing a 3D velocity potential v :=∇j, leading to ∇ ×
v= 0, and utilizing a barotropic law p= p(ρ), Equations (32)
and (33) take the following form:

· ( ), 34j r r j  = - D

( )
( )

( )
( )

( )
( )

0

0. 35

dp

p t
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p t

2

2

2

2

ò

ò

f
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 + + + =

 + + + =

r
j j

r
j j





¶
¶

¶
¶

The latter, Equation (35), is the classical Bernoulli equation for
compressible, unsteady flows without viscosity. Without loss
of generality, we have incorporated a possible time-dependent
integration constant into the function j. This equation needs
further integration, as the mass conservation equation,
Equation (34), must also be fulfilled. The study of possible
temporal evolutions of the Euler equation, Equation (33),
together with the mass continuity equation, Equation (34), is
the subject of Section(3.1).

In analogy to the incompressibility representation (ρ= ρ(ψ)),
we introduce the affinity between isosurfaces of the velocity
potential and density, namely, ρ= ρ(j), where

( ) d dr r j r j¢ = ¢ = . Adding an explicit time dependence to
the mass continuity equation, Equation (34), results in the time-
dependent continuity equation

( ) ( )
t

0. 362j
j

r
r

j¶
¶

+ +
¢
D =

Using this equation, we substitute either the quadratic
derivative of the potential j or its time derivative in the Euler
equation, Equation (35), and obtain

( ) ( )G
t

1

2 2
0, 37j

j r
r

j f+
¶
¶

-
¢
D + =

respectively,

( ) ( ) ( )G
2

0 38
2

j
j r

r
j f


- -

¢
D + =

with

( ( ))
( )

( )
( )

( )G
dp

p

dp

d

d

d

d
. 39ò òr j

r
r
r

r
j

j
r j

= =

The function G can be identified as the specific enthalpy.
Equation (37) is a nonlinear diffusion equation, similar to the

nonlinear Schrödinger equation, and Equation (38) is a
convection–diffusion-type equation.

In the following, we first discuss a special case with a
specific time dependency where only j is time dependent and ρ
is stationary and depends only on the spatial parts of j
(Section 3.1), whereas in Section 3.2 we return to the general
case of a density depending explicitly on the time-dependent
velocity potential.

3.1. Separable Time Dependence and Neglection of Gravity

We want to search for the general time dependence of
(circumstellar) flows in order to find out whether instabilities or
collapse processes necessarily occur, even if the system
stipulates a stationary density at far distances from the central
star as observations suggest. In particular, we are interested in
an expansion of a solution around an equilibrium state, and this
can be naturally achieved by the separation of the temporal and
spatial parts of the corresponding fields. Therefore, we assume
a separability of time dependency for the pressure and velocity
potential, consider a stationary density, depending on the
spatial part of the velocity potential, and neglect gravity,4 i.e.,
p= p0(t)p1(j1), j= j0(t)j1(x, y, z), and ρ= ρ(j1). The chosen
time separability for the pressure enables a barotropic law at
any time. Inserting this separability ansatz into the conservation
of mass equation for stationary density, Equation (34), we
obtain the relation

( )
( )
( )

( ). 401
2 1

1
1j

r j
r j

j = -
¢

D

With the 3D velocity potential v=∇j, and neglecting gravity,
Equation (33) reduces to

( )v v
t

p

2
. 41

2

r
 ¶

¶
+ = -

Inserting the separation ansatz for the pressure and the velocity
potential leads to

⎡

⎣
⎢

⎤

⎦
⎥( ( ) )

( )
( )

( ( ) ( ))
( )

( )

t
t p t p

2
.

42

0 1
0
2

1
2 0 1 1

1

j j
j

j
j

r j
  


+ = -

The right-hand side can be written as

⎡
⎣⎢
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With this, Equation (42) can be formally integrated, and if we
replace the term ( )1

2j by Equation (40), we obtain

( )
( )
( )

( ) ( )
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1
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We define

˜ ≔
( )
( )

( )F
p d

. 451 1 1

1
ò

j j
r j
¢

As one can see by inspection of Equation (39), F̃ is up to a
factor p0(t) identical to the specific enthalpy G. Inserting
Equation (45) into Equation (44), we get

˜ ˜ ( )p
F F2

0 460 0
2 1 0 1

j
r
r

j j j
-

¢
D

+ =

4 The influence of gravity can be neglected for cases in which the
gravitational force is considerably smaller than the pressure gradient, which
is fulfilled at distances of circumstellar rings far from the star and pressure
gradient length scales across the ring small compared to the distance of
the ring.
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˜ ˜ ( )
p

F F2
0. 470
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1 1
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j

j
r
r

j j
 -

¢
D

+ =

Equation (47) is only valid for 00j ¹ . To achieve the
separability of this equation into spatial and time-dependent
parts, we factorize the first terms in Equation (47) and
recognize that it is indispensable that the term

p0

0
2j
must be

constant. We label this constant as c1 and obtain

⎜ ⎟
⎛
⎝

⎞
⎠˜ ˜ ( )c

F F2
0. 480

2

0
1

1 1


j

j
r
r
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Equation (48) can only be solved if const00
0
2

0
j= =

j

j
. The

integral of this differential equation is

( )
t t

, 490
00

0
j

j
=

-

delivering a finite-time singularity for the time-dependent part
of the velocity potential. The constant j00 describes the
amplitude of the velocity potential imprinted onto the spatial
part of the velocity potential for the time t= 0.

For the spatial part, we find

˜ ( )c F2 2 . 501

00
1 1

j
j

r
r

r
r

j
¢
+

¢
= D

Equation (50) is basically a nonlinear elliptic partial
differential equation whose solution reflects the spatial part of
the scalar velocity potential j1 and thus determines the
structure of the entire time-dependent flow. To solve this
equation requires the knowledge of the specific enthalpy F̃ ,
respectively, G, which results from the specification of the
density function ρ(j1) along with pressure dependency p1(ρ) or
explicitly p1(j1).

A detailed analysis of this equation is beyond the scope of
the current paper, however, we wish to draw attention to the
fact that, if the time separability is requested along with a time
independent density distribution (stationarity), then according
to Equation (49) for j00> 0, t0> 0 and t0> t the system
inevitably develops into a finite-time singularity for t→ t0,
whereas in the limit t→−∞ the velocity and pressure decay.

For a simplified case we can find a subspace. For example,
for the case 00j = , Equation (46) takes the following form:

˜ ( )p
F2

0. 510 0
2 1j
r
r

j
-

¢
D

=

This equation can only be fulfilled for p const0 = . In this case,
the equation takes the form of a quasi-linear partial differential
equation

( )
( )

˜( ) ( )
p

F2 , 521
1

1

0

0
2 1j

r j
r j j

jD =
¢

which can also be derived directly from the nonlinear
Schrödinger equation, Equation (37). Equation (52) is a
nonlinear Poisson equation for which exact analytical solutions
are known in 2D.

3.2. General Time-dependent Approach and Generalized Cole–
Hopf Transformation

We return now to the system of nonlinear diffusion
equations, Equations (36)–(39), which we want to reformulate
in a more compact form. For this, we use a generalized form of
the Cole–Hopf transformation. The basic form of this
transformation type has been invented by Hopf (1950) and
Cole (1951).
In the case of nonlinear diffusion equations, the spatial part

of the differential operators can have the form

( ) ( )a b c a b c, , functions. 532j jD + = 

Let us assume j= F(Λ), we can rewrite Equation (53) as

[ ( )( ) ( ) ] ( ( )) ( ) ( )a F F b F c, 542 2 2  L L + ¢ L DL + ¢ L L =

where the primes at F denote derivatives with respect to Λ. The
transformation j= F(Λ) should be now done in such a way
that terms with (∇Λ)2 are eliminated. This demand can be
formulated as

( ) ( ( )) ( )aF b F 0. 552 L + ¢ L =

To solve Equation (55), it is necessary that the function a/b
only explicitly depends on Λ. The transformation F can be
derived by integration of the condition Equation (55), which
has the general solution

⎛
⎝

⎞
⎠

( )F
d

d

b

a
d dexp . 56

b

a

ò ò ò
ò

j j=
L

L
 L =

With the condition, Equation (55), Equation (54) reduces to

( ) ( )aF c. 57¢ L DL =

From a comparison of coefficients between Equations (36) and
(53), we can derive the functions a, b, and c

( )a b c
t

and 1 and . 58
r
r

j
=

¢
= = -

¶
¶

Inserting the general solution, Equation (56), along with the
functions a, b, and c into Equation (57) leads to

⎡
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t
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The last equation of Equation (59) is a nonlinear diffusion
equation and is the Cole–Hopf transformed mass continuity
equation. For this kind of nonlinear diffusion or Schrödinger
equations, Equations (59) and (37), it is known that they can
have blow-up solutions (see, e.g., Galaktionov &
Vázquez 2002).
Next, we transform Equation (38). Due to the mathematical

similarity of Equations (38) and (53) we can use the
transformation equation, Equation (56), for

( )a band
1

2
. 60

r
r

= -
¢

= -
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This leads to
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The advantage of carrying out the transformation is that
Equation (61) does not contain time derivatives and quadratic
terms anymore, and that it is again a nonlinear Poisson
equation, which can be solved with standard procedures. The
only problematic and nontrivial issue is that ρ(j) must be
chosen adequately in order to find solutions to the equation,
based on which it will be possible to obtain the velocity field,
pressure, and density distribution.

4. Solutions of Euler Equation for Special, Persistent
Geometrical Flow Patterns

Now we drop the condition for incompressible or irrotational
flows and treat the hydrodynamical problem of nonlinear and
nonlocal instabilities from a more general point of view. It is
possible to implement the gravitation of the star into the
pressure in case that either p can be considered as a function of
ρ (barotropic fluid), or ρ as a function of f, although in the
former case, it will then be necessary to slightly modify the
equation of motion. Without significant loss of generality, we
therefore use only one pressure gradient force and write the
Euler equation for the stellar wind in the following form:

·( ) ( )v v
v

p
t

. 62r r = - -
¶
¶

For this, the equilibrium solution, which one may also consider
as the ground state of the system, is

· ·( ) ( ) ( )v v vp 0. 630 0 0 0 0 0r r  = -  =

If we assume the separability for the pressure p= p1(t)p0(x) and
analogously also for the density ρ= ρ1(t)ρ0(x) and for the
velocity field v= v1(t)v0(x), then we will show in the following
that for some choices of constraints there can exist regular
solutions, and other choices can lead to a blow-up of the
stationary nonlinear spatial solution.

The separation implies that locally, i.e., inside some small
subset of a time interval, the fluid variables are not to be
considered as fast evolving, around a known stationary wind
solution. The mass continuity equation can then be written as

· ( ) ( )vv 0, 640 1 1 1 0 0r r r r+ =

and with the conditions of Equation (63) it follows that

( )0 1 651 1r r=  =

without loss of generality.
The Euler equation, Equation (62), together with the initial

condition Equation (63) can be expressed in the form given in
Equation (66). Taking first the divergence operator on both

sides (∇ · ), and second the curl operator (∇×), one receives

( )vp p v p v 661 0 1
2

0 0 1 0r = -

( ) ( )vp 00 670 0 0r´ D =  =

( )v
v

p v v v p

, 0, const., with

68
0 0 00

0 00 0 00 0 00 0 0 0

j j
j j r 

 $ D = =
=  º =

( )p v
v

v
1

. 691 1
2

00
1 - = -

The condition v00< 0 is subject to the physical approach that
the direction of the velocity should be antiparallel to the
pressure gradient in the relation between the mass-current
vector ρ0 v0, and the pressure gradient Equation (68). The
assumption that v00< 0 reflects the decrease of the pressure
from upwind to downwind direction, which usually drives a
stellar wind or emulates decretion.
Equation (69) represents an ordinary differential equation for

the time-dependent dynamics of the flow, based on the
equilibrium solution Equation (63). Already under simplified
assumptions, like p const.1 = , we can find solutions with
finite-time singularities (blow-up solutions), but these solutions
originate from a finite-time singularity and converge toward the
equilibrium solution. In contrast to the decretion solution, the
accretion solution would originate from the equilibrium
solution and converge to a finite-time singularity. In the case of
p1= 0, it can clearly be seen and easily calculated that
v1∝ 1/(t0− t). This solution must be excluded, as this would
imply that the time perturbation reduces the complete pressure
to zero for all times, implying a pressureless fluid, i.e., a
completely force-free flow.
For p const. 01 = ¹ , we calculate the formal solution:

˜

˜

∣ ∣
˜
˜
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t t
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p v
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leading to
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For t> t0 and v v p,1 10 1> Equation (71) can be reformulated
as

⎜ ⎟
⎛

⎝

⎞

⎠
∣ ∣ ( ) ( )v

p
v p t t Carcoth 721

1
00 1 0

2= - +

( ) (∣ ∣ ( ) ) ( )v t p v p t t Ccoth 731 1 00 1 0
2 = - +

with

⎜ ⎟
⎛

⎝

⎞

⎠
( )C

v

p
arcoth . 742 10

1

=

Then, the solution of Equation (73) implies that the velocity
decays with time and relaxes into an equilibrium state.
If we assume that p1 is not constant anymore but p1= p1(t)

can be imposed, then Equation (69) turns into an ordinary
differential equation of Riccati type.
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As the problem is nonlinear anyway, the function p1 can be
regarded, especially in this situation of a dependency of only
one variable, namely, t, as a function of v1, i.e., p1= p1(v1). For
certain constraints, we are able to show that equilibria could
converge to blow-up solutions. The assumption that p1(v1)� 0
guarantees that the pressure is always positive. For a
continuous outflow, we must also guarantee that v1 is always
larger than zero if we exclude oscillatory phases of acceleration
and deceleration. These conditions are fulfilled by –p v 01 1

2 
(see Equation (69)). Thus, it is further necessary that p1 is not
only positive, and a sufficient criterion to guarantee the validity
of –p v 01 1

2  is that there exists a p10> 1 and p p v1 10 1
2= such

that

∣ ∣
( )p v v

v
v

1
. 7510 1

2
1
2

00
1- =

Integration of this equation results in

( )
( )∣ ∣( )

( )v t
p v t t

1

1
76

v

1

10 00 0
1

10

=
- - +

with v1(t0)= v10. For t→ tcrit, the system develops a blow-up,
where

( )∣ ∣
( )t

v p v
t

1

1
. 77crit

10 10 00
0=

-
+

To summarize, the choice of p1(v1) determines the temporal
course of the flow and we have shown two contrasting
examples, namely a decaying perturbation (for p const.1 = )
and a perturbation that causes a blow-up of the system (for
p p v1 10 1

2= ). More complex choices of p1(v1), e.g., with higher
orders of the polynomial, can lead to correspondingly diverse
results such as multiple blow-ups and decays. Other time
courses are quite possible and will occur, but one should keep
in mind that the blow-up solutions can be damped by normal
and anomalous dissipative processes, leading to a regular time-
dependent behavior. However, the blow-up solutions indicate
that nonlinear instabilities can develop in quasi-ideal systems
and hence can lead to abrupt changes in the typical temporal
scales.

5. Discussion and Conclusions

The environments of certain types of evolved massive stars,
such as the B[e] supergiants, display indications for disks, or
multiple ring-like structures of yet unknown origin, which
cannot be reconciled with the classical theory of a (viscous)
outflowing disk (e.g., Lee et al. 1991; Okazaki 2001; Kurfürst
et al. 2018). These configurations can be either steady (Kraus
et al. 2016, 2023) or display temporal variability (Maravelias
et al. 2018; Torres et al. 2018). Therefore, we have two
problems, namely, (i) either long timescales (equilibria), or
systems close to or converging to equilibrium states, or (ii) we
need short timescales to explain the sudden appearance of new
structures (such as detected by Oksala et al. 2012) resulting
from nonlinear instabilities (occurring either within the
circumstellar matter or already in the stellar atmosphere),
which might be connected to collapse processes (finite-time
singularities). To study the high diversity of geometrical
structures and their possible formation mechanism we recourse

to elementary mathematical tools of classical HD such as linear
and nonlinear potential theory.
For the first case of long timescales, complex geometries of

streamlines are known and can be constructed from the
potential representation of equilibrium fields, e.g., potential
fields (Laplace equation), or by nonlinear solutions of Grad–
Shafranov-type equations, where closed and open streamline
configurations (arcs, rings, radial structures) are possible (see,
e.g., Nickeler et al. 2013, 2014). In our analysis, we include
flows and gravity and find that the equations are of similar
structure, which means that they can be solved in an analogous
manner. We could prove that for a non-pressureless gas we can
find quasi-Keplerian or even Keplerian rotation of the
circumstellar matter.
To bridge the gap from these equilibrium structures to short

timescales a homotopic modulation, i.e., a dilatation of the
quasi-equilibria is performed, leading eventually to restrictions
for the equilibrium values and to ordinary differential equations
as constraints for the time dependencies of the fluid equations.
These ordinary differential equations in time lead either to
regular (decay or growth, or relaxation) or non-regular time
dependencies where the latter includes finite-time singularities,
which are known from (magneto-)hydrodynamical systems
(e.g., Klapper et al. 1996; Nickeler & Karlický 2008), and a
broad overview about mathematical solution techniques for
different physical problems can be found in Galaktionov &
Svirshchevskii (2007, and references therein).
For future investigations, non-separable time dependencies

can be taken into account to get a better understanding of the
variability and changes of the circumstellar matter. Moreover,
for studies of the conditions under which rings and arcs can
form within the circumstellar material it will be important to
analyze in more detail the influence of different conformal
mappings or multipole components, being able to create arcs,
rings, and spiral-arm-like structures. Such an analysis will then
allow us to derive the properties of the gas (density,
temperature, and emissivity) which can be compared to
observed quantities.
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