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A B S T R A C T 

Yellow hypergiants (YHGs) are massive stars that are commonly interpreted to be in a post-red supergiant evolutionary state. 
These objects can undergo outbursts on time-scales of decades, which are suspected to be due to instabilities in the envelope. To 

test this conjecture, the stability of envelope models for YHGs with respect to infinitesimal, radial perturbations is investigated. 
Violent strange mode instabilities with growth rates in the dynamical regime are identified if the luminosity-to-mass ratio exceeds 
≈10 

4 in solar units. For the observed parameters of YHGs, we thus predict instability. The strange mode instabilities persist over 
the entire range of ef fecti ve temperatures from red to blue supergiants. Due to short thermal time-scales and dominant radiation 

pressure in the envelopes of YHGs, a non-adiabatic stability analysis is mandatory and an adiabatic analysis being the basis of 
the common perception is irrele v ant. Contrary to the pre v ailing opinion, the models considered here do not e xhibit an y adiabatic 
instability. 
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 I N T RO D U C T I O N  

he upper domain of the Hertzsprung–Russell (HR) diagram is 
opulated by massive stars ( > 8 M �) in their diverse evolutionary
tates. One of these stages comprises the yellow hypergiants (YHGs). 
hese stars spread in temperature from about 4000 to 8000 K and
ave luminosities in the range 5.4 ≤ log L /L � ≤ 5.8. YHGs are
ommonly interpreted as being in their blueward evolution after 
aving passed through a previous red supergiant (RSG) phase 
e.g. de Jager 1998 ; Gordon & Humphreys 2019 ). According to
tellar evolutionary tracks for rotating single stars (e.g. by Ekstr ̈om
t al. 2012 ), they might have evolved from progenitors with initial
asses of 20 –40 M � because stars in this mass range are suggested

o evolve back to the blue, hot side of the HR diagram where
hey may evolve into hot supergiants, such as the luminous blue 
ariables, B[e] supergiants, or Wolf–Rayet stars. This prediction of 
he evolutionary models is consistent with the observational finding 
f an apparent absence of Type II-P supernovae for stars that are
nitially more massive than ∼20 M � and whose progenitors are 
SGs (Smartt 2009 ). These evolutionary models also predict that 

tars more massive than 40 M � apparently do not evolve into cool
SGs. These stars seem to reach their turning point at significantly 
igher temperatures from where the y evolv e back to the blue side,
nd they do so the earlier (i.e. the hotter) the more massiv e the y are.
onsequently, evolution into a YHG is restricted to stars within a very
arrow initial mass range, consistent with the position of currently 
onfirmed YHGs in the HR diagram (e.g. Kourniotis et al. 2022 ). 

The distinction between pre- and post-RSG stars in the yellow 

omain is based on the significant spectroscopic and photometric 
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ariability of the latter. YHGs can also display indication for large-
cale nebulae formed from the e xtensiv e mass-loss during the RSG
hase. This is particularly true for the more massive objects, which
ransit much faster from the red to the yellow domain, leaving not
uch time for the released mass to expand and dilute. Indeed, the
ore massive stars in the currently known sample of Galactic YHGs

isplay either an extended nebulosity (e.g. IRC + 10420; Tiffany et al.
010 ) or indication for large spherical shells of expanding cold
olecular gas (e.g. IRC + 10420 and HD 179821; Oudmaijer et al.

009 ). 
Besides these large-scale ejecta, YHGs can also be embedded in 
aterial that the stars have released more recently, most likely during

ne or more outburst events. Clear indication for such recent ejection
pisodes has been found for only a few cases, such as the Galactic
bject IRAS 17163 −3907 (also known as the Fried Egg nebula;
agadec et al. 2011 ), which seems to have experienced at least three
utbursts within the past 100 yr. These outbursts have led to the
ormation of three individual dust shells around the star (Koumpia 
t al. 2020 ). 

Ho we ver, not e very outburst releases enough mass to guarantee
he production of significant amounts of detectable dust. The prime 
xample is the Galactic object ρ Cas that has experienced at least
our outbursts during the past ∼90 yr (Maravelias & Kraus 2022 ),
ut only after its outburst in 1946–1947 emission from dust could
e detected that must have formed from the released matter (Jura &
leinmann 1990 ). Since then, this dust shell expanded and cooled,
ut no new dust has formed in detectable amounts from the more
ecent events (Shenoy et al. 2016 ). 

Ejected circumstellar material can also be traced by static nebular 
ine emission of low-excitation metal lines, such as Fe I , Sr II , Y II ,
nd Ba II (e.g. Lobel et al. 1998 ; Kourniotis et al. 2022 ), by emission
f forbidden lines such as [Ca II ] and [O I ], whereby [O I ] is typically
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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een in hotter YHGs such as IRC + 10420 and V509 Cas (Aret et al.
017 ; Klochkova 2019 ), or by emission of warm molecular gas. The
O ro-vibrational bands are the most prominent molecular emission

eatures. These molecular bands have been detected in the near-
nfrared spectra of a number of objects, such as the Galactic YHGs
509 Cas and ρ Cas (Lambert, Hinkle & Hall 1981 ; Gorlova et al.
006 ; Kraus et al. 2022a ), HD 179821 (Hrivnak, Kwok & Geballe
994 ), [FMR2006] F15 (Davies et al. 2008 ; Kraus et al. 2023 ),
nd two objects in the Large Magellanic Cloud (LMC), the stars
D 269723 and HD 269953 (McGregor, Hillier & Hyland 1988 ;
ksala et al. 2013 ). Moreo v er, hot water vapour emission has recently
een disco v ered from the environment of HD 269953 (Kraus et al.
022b ). 
Outbursts in YHGs are usually identified by a sudden and steep

ecrease in visual brightness of the star along with indications
or a rapid drop in spectroscopic temperature and the formation
f TiO molecules in the expanding envelopes, which give rise
o characteristic absorption bands in the spectra. The decrease in
pectroscopic temperature makes the star to seemingly undergo a
edward excursion in the HR diagram, until the episode of strong
ass-loss cedes and the material expands and dilutes. The reco v ery

hase is usually much longer than the onset of the outburst and
roceeds with a gradual brightening, back to the object’s pre-
utburst magnitude, and an apparent heating up of the star causing
ts mo v ement back to the hotter pre-outburst position in the HR
iagram. The outburst duration of individual YHGs can be very
ifferent. Ev ents hav e been recorded that lasted for decades as, for
 xample, e xperienced by Var A in M33 (Humphreys et al. 2006 ) or
or just a couple of years as for the Galactic star ρ Cas (Lobel et al.
003 ; Kraus et al. 2019 ; Maravelias & Kraus 2022 ). 
The cause of the outburst activity of YHGs has been ascribed in the

iterature to instabilities occurring in the envelope or atmosphere of
he stars (e.g. Nieuwenhuijzen & de Jager 1995 ; de Jager et al. 2001 ).
n particular, it has been proposed that, when a YHG approaches a
emperature of ∼7000 K, its atmosphere starts to become unstable
eading to substantial mass-loss (e.g. Stothers & Chin 1993 ; de Jager
t al. 2001 ; Lobel 2001 ; Stothers & Chin 2001 ). This temperature
as been suggested to mark the lower boundary of a domain that
as been dubbed the ‘yello w e v olutionary v oid’ (Nieuwenhuijzen &
e Jager 1995 ; de Jager & Nieuwenhuijzen 1997 ) because of the
pparent lack of stars observable within this region. Furthermore,
he outburst activity of YHGs has been referred to as bouncing at
he yellow void (de Jager & Nieuwenhuijzen 1997 ) or, respectively,
he yellow/white wall (Oudmaijer & de Wit 2013 ), because of the
pparent redward-directed excursion the star undertakes after each
vent. 

In this work, we critically re vie w the concept of the dynamical
nstabilities, in particular the adiabatic instability that is usually
laimed to be responsible for the outbursts and the mass ejections
n YHGs. On the basis of an adiabatic stability analysis, we pro v e
hat all stellar models in the YHG domain are stable, questioning the
xistence of the yello w e v olutionary v oid. Instead, we propose that
he outbursts of YHGs could be related to strange mode instabilities.
s has been shown by Gautschy & Glatzel ( 1990b ) and Glatzel

 1994 ), the excitation of these modes is to be expected in massive
tars with high values of their luminosity o v er mass ratio, for which
ost-RSGs are excellent candidates (Saio, Georgy & Meynet 2013 ).
ecause strange mode instabilities have the potential to trigger time-
ariable mass-loss and mass ejections (Glatzel et al. 1999 ), they
ro vide an e xcellent, alternativ e mechanism to driv e outbursts in
HGs. We present a thorough stability analysis with respect to linear
on-adiabatic radial perturbations focusing on the parameter space
NRAS 529, 4947–4957 (2024) 
ccupied by confirmed YHGs. We demonstrate the occurrence of
trange modes in all suitable models and show that their appearance
oes not (or only very mildly) depend on the ef fecti ve temperature
f the star. 
In Section 2 , the construction of stellar models and the basic

ssumptions and methods of the stability analysis are described.
he results for models of ρ Cas and YHGs in the LMC together
ith an investigation of their dependence on ef fecti ve temperature

re presented in Section 3 . Section 4 contains an e xtensiv e critical
iscussion in particular with respect to the common perception of
diabatic instability in the upper domain of the HR diagram. Our
onclusions follow in Section 5 . 

 ANALYSI S  

.1 Stellar models 

n order to represent the observed properties of YHGs as accurately
s possible, the study is based on envelope models constructed for
he observed stellar parameter luminosity, ef fecti ve temperature, and
hemical composition. The uncertainty in mass is taken into account
y considering wide mass ranges that should include the values
uggested by both the spectroscopic analysis and the comparison
ith evolutionary models. In order to demonstrate the dependence on

f fecti ve temperature of the results of the stability analyses, we shall
lso consider model sequences with varying effective temperature
nd fixed luminosity, chemical composition, and mass. 

For prescribed luminosity, ef fecti ve temperature, chemical com-
osition, and mass, the structure of the stellar envelope between
he photosphere and some suitably chosen bottom boundary can
e determined by initial value integration of the equations of
ydrostatic equilibrium, energy transport, and mass conservation,
here unambiguous initial values are imposed at the photosphere.
y definition, the luminosity is constant throughout the envelope.
he bottom boundary is defined in terms of a maximum temperature

hat guarantees that nuclear burning does not pre v ail. It corresponds
o a finite radius. 

Concerning the treatment of convection, its onset is determined
y Schwarzschild’s criterion, standard mixing-length theory (B ̈ohm-
itense 1958 ) with 1.5 pressure scale heights for the mixing length

s adopted for its description, and o v ershooting as well as semicon-
ection are disregarded. Opacities have been taken from the OPAL
ables (see Rogers & Iglesias 1992 , Iglesias & Rogers; 1996 and
ogers, Swenson & Iglesias 1996 ). 

.2 Stability analysis 

n this study, we test the envelope models for YHGs for stability
ith respect to infinitesimal radial perturbations. The associated
athematical problem is derived and described (e.g. in Baker &
ippenhahn 1962 ). Adopting their notation and treating convection

ccording to the ‘frozen-in approximation’ (see e.g. Baker & Kippen-
ahn 1965 ), the boundary eigenvalue problem posed by the analysis
f radial linear non-adiabatic stellar stability and pulsations (linear
on-adiabatic analysis, hereafter LNA analysis) is solved using the
iccati method (see Gautschy & Glatzel 1990a ). In addition to the
NA analysis, the envelope models have been subject to a standard

adial linear adiabatic stability analysis (for details, see Cox 1980 ). 
As a result of the stability analyses, we obtain for each envelope
odel its complex eigenfrequencies σ , where the real parts σ r 

orrespond to the pulsation frequencies, and the imaginary parts
i indicate the growth or damping rates of the various modes. In
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Figure 1. Real parts of the lowest order eigenfrequencies σ as a function 
of mass for envelope models with parameters resembling those of ρ Cas. 
Unstable modes are indicated by thick lines. 
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Figure 2. Imaginary parts of the lowest order eigenfrequencies σ as a 
function of mass for envelope models with parameters resembling those of ρ
Cas. 

Figure 3. The density ρ as a function of relative radius for envelope models 
with chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02), luminosity L = 5 ×
10 5 L �, ef fecti ve temperature T eff = 7000 K, and the masses M = 24.1 M �
(full line), M = 19.1 M � (dashed line), M = 30 M � (dotted line), and M = 

50 M � (dash–dotted line). Note that the bottom boundary of the models 
corresponds to a finite radius. 
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ur normalization σ i > 0 corresponds to damping (stability) and 
i < 0 to growth and e xcitation (instability). F or conv enience,

he eigenfrequencies will be presented in dimensionless form, i.e. 
hey will be normalized by the global free-fall time (cf. Baker &
ippenhahn 1962 ; Gautschy & Glatzel 1990a ). This normalization 

s common for theoretical studies such as the present investigation. 
n particular, it a v oids the masking of results by the period–density
elation. 

In the radial linear adiabatic analysis (also referred to as the 
diabatic approximation), the boundary eigenvalue problem is equiv- 
lent to a (self-adjoint) Sturm–Liouville problem (see e.g. Ledoux & 

alraven 1958 ; Cox 1980 ). As a consequence, σ 2 is real and forms
n infinite, well-ordered sequence with a smallest (fundamental) 
igenvalue and a limit point at infinity in the adiabatic approximation. 
hus, σ 2 < 0 for the fundamental eigenfrequency is a necessary and 
ufficient condition for instability (and vice versa) in the adiabatic 
pproximation. Accordingly, adiabatic stability and instability can 
e determined by merely considering the fundamental adiabatic 
igenfrequency. Instability sets in through σ = 0. 

 RESULTS  

.1 ρ Cas 

dopting observed values for the luminosity ( L = 5 × 10 5 L �;
umphreys 1978 ), the mean spectroscopic ef fecti ve temperature 

 T eff = 7000 K; Lobel et al. 1994 ; Kraus et al. 2019 ), solar chemical
omposition [( X , Y , Z ) = (0.74, 0.24, 0.02)], and a range in mass
etween 19 and 50 M �, including the most likely value of the star’s
urrent evolutionary mass of 24.1 M � (Kraus et al. 2019 ), a sequence
f envelope models with the mass as a parameter has been constructed
nd tested for stability. Real and imaginary parts of the lowest order
igenfrequencies σ are presented as a function of mass in Figs 1 and
 . 
At high masses, all modes are damped and their frequencies are 

egularly spaced, as expected for an ordinary acoustic resonator. 
ith decreasing mass (below ≈35 M �), multiple mode crossings 

nd mode pairings unfolded both according to the ‘a v oided crossing’
nd the ‘instability band’ coupling schemes (see e.g. Gautschy & 
latzel 1990b ) are found, which are associated with the occurrence of
nstabilities having growth rates in the dynamical regime. Apart from 

ne strongly damped mode, whose frequency and damping increases, 
requencies and dampings tend to decrease with decreasing mass. 
or masses below ≈25 M �, damped and unstable modes exhibit an
pproximately complex conjugate symmetry, which is typical for 
he pure form of mode coupling according to the ‘instability band’
cheme. 

The behaviour of modes and the occurrence of instabilities is a
onsequence of the change with mass of the stellar structure. The
atter is shown in Fig. 3 by means of the density stratification of
nvelope models for ρ Cas with four different masses. 

The core–envelope structure of these models, where a small core 
ontains almost the total mass of the star and a tenuous envelope with
MNRAS 529, 4947–4957 (2024) 
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M

Figure 4. The ratio β of gas pressure to total pressure as a function of 
relative radius for envelope models with chemical composition ( X , Y , Z ) = 

(0.74, 0.24, 0.02), luminosity L = 5 × 10 5 L �, ef fecti ve temperature T eff = 

7000 K, and the masses M = 24.1 M � (full line), M = 19.1 M � (dashed line), 
M = 30 M � (dotted line), and M = 50 M � (dash–dotted line). Note that the 
bottom boundary of the models corresponds to a finite radius. 
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Figure 5. The ratio of thermal and dynamical time-scales as a function of 
relative radius for envelope models with chemical composition ( X , Y , Z ) = 

(0.74, 0.24, 0.02), luminosity L = 5 × 10 5 L �, ef fecti ve temperature T eff = 

7000 K, and the masses M = 24.1 M � (full line), M = 19.1 M � (dashed line), 
M = 30 M � (dotted line), and M = 50 M � (dash–dotted line). Note that the 
bottom boundary of the models corresponds to a finite radius. 
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egligible contribution to the stellar mass covers the entire space,
s becoming more and more pronounced as the mass decreases.
his change in structure, in particular the decrease of density in

he envelope with decreasing mass, has a direct impact on the
ontribution of gas pressure to total pressure in the stellar envelope.
he ratio β of gas pressure to total pressure for the models considered

s presented in Fig. 4 . 
Whereas for M = 50 M � the fraction of gas pressure is still

igher than 25 per cent everywhere, it falls below 10 per cent in
lmost the entire envelope for M = 19.1 M �. Thus, the envelopes
tudied become more and more dominated by radiation pressure as
he mass decreases. Another crucial consequence of the structure
nd low densities of the envelopes considered refers to the time-
cales go v erning acoustic wav es in the stellar env elope [see also the
nalogue discussions in Gautschy & Glatzel ( 1990b ) and Glatzel
 2021 )]. 

The local dynamical time-scale may be estimated as the time
eeded by a sound wave to cross a mass shell with thickness � r .
stimating the sound speed as c 2 Sound ∝ p / ρ ( p : pressure, ρ: density),

t is given by 

Dyn ∝ �r 
√ 

ρ/p . (1) 

On the other hand, the local thermal time-scale of a mass shell with
ass � m may be defined as the time needed to radiate its thermal

nergy content at the local luminosity, where the thermal energy
ontent might be expressed as the product of the specific heat c p , the
emperature T , and the mass � m . Rewriting the latter in terms of the
ensity ρ and the volume of the mass shell, we finally obtain for the
ocal thermal time-scale: 

Thermal ∝ 

c p T �m 

L 

= 

c p T ρ4 πr 2 �r 

L 

. (2) 

oth the local dynamical and the local thermal time-scale depend
n the thickness � r of the mass shell considered. Unless there are
urther arguments how to choose � r , they can be giv en an y value
ince the choice of � r is ambiguous. Thus, the local dynamical and
hermal time-scales given by equations ( 1 ) and ( 2 ) are ill-defined
NRAS 529, 4947–4957 (2024) 
uantities without any physical rele v ance. Ho we ver, their ratio being
ndependent of � r is well defined and given by 

τThermal 

τDyn 
∝ 

4 πr 2 ρc p T 

L 

√ 

p/ρ . (3) 

he ratio of thermal and dynamical time-scales as a function of
elative radius for the envelope models discussed is shown in Fig. 5 .
s in any stellar model, this ratio achieves very high values in the

ore and is smallest (maybe even below unity) at the surface. As a
onsequence, all sound waves become adiabatic in the deep interior
f the star and non-adiabatic effects have to be taken into account
n a certain domain below the stellar surface, where the ratio of
hermal and dynamical time-scales is of order unity or smaller. This
omain depends on the stellar model and shrinks with increasing
ass for the models discussed (see Fig. 5 ). In other words, with

ecreasing mass we expect the adiabatic approximation to become
ess and less valid. Instead of characterizing them by an infinite
hermal time-scale (adiabatic approximation), low-mass models for

Cas should rather be described by the opposite approximation of a
mall or vanishing thermal time-scale. The latter corresponds to the
on-adiabatic reversible (NAR) approximation (see e.g. Gautschy &
latzel 1990b ). 
In the NAR approximation, eigenfrequencies occur in complex

onjugate pairs, i.e. modes are either neutrally stable or damped and
nstable modes appear simultaneously thus forming pairs with the
ame frequency and identical moduli of growth and damping rates.

oti v ated by the consideration that the NAR approximation might
e applicable to low-mass models for ρ Cas, we have performed a
orresponding analysis whose results are shown in Figs 6 and 7 . 

In the NAR approximation, for high masses the modes are found
o be neutrally stable. With decreasing mass below ≈25 M � some
f the adjacent modes merge to form complex conjugate pairs of
amped and unstable modes in a way that is quite close to the analysis
ithout approximation (cf. Figs 1 and 2 ). For comparison, Fig. 8

ontains the imaginary parts of σ both from the exact and the NAR
nalysis. With respect to the strong dynamical instabilities at low
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Figure 6. Same as Fig. 1 , but using the NAR approximation. Thin lines 
correspond to neutrally stable modes and thick lines to complex conjugate 
pairs of damped and unstable modes. 

Figure 7. Same as Fig. 2 , but using the NAR approximation. Modes are 
either neutrally stable or appear in complex conjugate pairs of damped and 
unstable modes. 
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Figure 8. Same as Figs 2 and 7 , but with results from the exact analysis (thin 
lines) and using the NAR approximation (thick lines) superimposed. Note 
the similarity of exact and NAR results in particular in the domain of strong 
instabilities with growth rates in the dynamical regime. 

Figure 9. Same as Fig. 1 , but with the three lowest neutrally stable adiabatic 
eigenfrequencies (dashed lines) added. We emphasize that there is no 
instability in the adiabatic approximation and the adiabatic frequencies do 
not appear to provide an approximation to the correct frequencies at all. 
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asses, their complex conjugate symmetry, and the associated mode 
nteractions, we conclude that the NAR approximation provides 
t least qualitatively satisfactory results. These findings thus also 
upport the assumption that the opposite approximation of an infinite 
hermal time-scale, the adiabatic approximation, should be invalid for 
he models considered. 

To pro v e this conjecture, an adiabatic analysis has been performed
or the ρ Cas models. The results in terms of the frequencies of
he three lowest neutrally stable adiabatic modes are shown and 
ompared with the exact frequencies in Fig. 9 . From Fig. 9 , we
educe that – as expected – the adiabatic frequencies do not provide 
n approximation to the exact frequencies in any respect, not even 
or high masses. Moreo v er, the fundamental adiabatic mode that 
ndicates adiabatic stability and instability , respectively , exhibits 
nite frequency for all models and thus no evidence at all for adiabatic

nstability. 
To complete the discussion of the adiabatic analysis, the adiabatic 
xponent γ ad is shown for four ρ Cas models with different mass in
ig. 10 . All models exhibit zones in which γ ad falls below the critical
alue 4/3. They are associated with the various ionization processes, 
ach of them causing a minimum of γ ad . Even if these zones with γ ad 

 4/3 do exist, their strength is not sufficient for adiabatic instability,
.e. the pressure-weighted volumetric mean of γ ad does not fall below 

/3 (which would be sufficient for adiabatic instability). The fact that
he fundamental mode has not shown any evidence for instability 
 xplicitly pro v es that the correct mean of γ ad is bigger than 4/3.
utside the ionization zones, γ ad is bigger than but close to 4/3 and

ncreases with mass. This is a consequence of dominant radiation 
ressure (cf. Fig. 4 ): The limit of pure radiation pressure ( β → 0)
mplies γ ad → 4/3. With increasing mass, β increases (see Fig. 4 ) 
nd, together with it, also γ ad . 
MNRAS 529, 4947–4957 (2024) 
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M

Figure 10. The adiabatic exponent γ ad as a function of relative radius for 
envelope models with chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02), 
luminosity L = 5 × 10 5 L �, ef fecti ve temperature T eff = 7000 K, and the 
masses M = 24.1 M � (full line), M = 19.1 M � (dashed line), M = 30 M �
(dotted line), and M = 50 M � (dash–dotted line). Note that the bottom 

boundary of the models corresponds to a finite radius. 
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Figure 11. Real parts of the lowest order eigenfrequencies σ as a function 
of mass for envelope models with luminosity L = 4.5 × 10 5 L �, ef fecti ve 
temperature T eff = 6000 K, and chemical composition ( X , Y , Z ) = (0.75, 0.24, 
0.01) resembling that of LMC objects. Unstable modes are indicated by thick 
lines. 

Figure 12. Imaginary parts of the lowest order eigenfrequencies σ as a 
function of mass for envelope models with luminosity L = 4.5 × 10 5 L �, 
ef fecti ve temperature T eff = 6000 K, and chemical composition ( X , Y , Z ) = 

(0.75, 0.24, 0.01) resembling that of LMC objects. 
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.2 Yello w hyper giants in the LMC 

n this section, the dependence on metallicity of instabilities in
he YHG domain will be studied. This is moti v ated by the recent
nvestigations of Kourniotis et al. ( 2022 ) of evolved hypergiants in
he LMC who classified the star HD 269723 as a luminous post-RSG
nd HD 271182 as a ρ Cas analogue and thus both as YHGs. These
bjects hence serve as ideal targets for our analysis. Both stars have
 similar temperature of T eff ∼ 6000 K but different luminosities.
ourniotis et al. ( 2022 ) hav e deriv ed values of L = 4.5 × 10 5 L �
nd L = 6 × 10 5 L � for HD 271182 and HD 269723, respectively.
ith these luminosities, the initial and current evolutionary masses

f the stars fall into the ranges of 32–40 and 20–30 M �. We adopt an
f fecti ve temperature of T eff = 6000 K, the two luminosity values, and
he chemical composition ( X , Y , Z ) = (0.75, 0.24, 0.01) resembling
hat of LMC objects. With respect to the uncertainty of mass, two
equences of envelope models with the mass as a parameter have been
onstructed and tested for stability. For the sequence with luminosity
 = 4.5 × 10 5 L �, real and imaginary parts of the lowest order
igenfrequencies σ are presented as a function of mass in Figs 11
nd 12 . 

Figs 11 and 12 may be compared with their counterparts for ρ Cas,
igs 1 and 2 . Qualitatively, there is no difference between the results
or ρ Cas and the LMC object. Mode interactions and associated
nstabilities do occur in the same way for both sequences. Instability
ets in below ≈30 M � for the LMC object, at a somewhat lower mass
han for ρ Cas, which is likely to be due to its smaller luminosity.
s for ρ Cas, we have performed an adiabatic analysis for the LMC
odels. Its result for the sequence with L = 4.5 × 10 5 L � in terms of

he three lowest neutrally stable adiabatic eigenfrequencies is shown
nd compared with the exact results in Fig. 13 (cf. the counterpart
or ρ Cas, Fig. 9 ). Except for the fundamental adiabatic mode at high
asses, the adiabatic frequencies do not provide an approximation

o the correct frequencies. Moreo v er, we emphasize that an adiabatic
nstability does not exist. 

The results obtained for the sequence with L = 6 × 10 5 L � are very
imilar to those for its counterpart with L = 4.5 × 10 5 L �, such that a
NRAS 529, 4947–4957 (2024) 
eparate discussion is redundant. Accordingly, for this sequence we
nly show the imaginary parts of σ as a function of mass in Fig. 14 .
s a consequence of the higher luminosity, the upper limit in mass for

nstability has shifted to higher masses (to around ≈40 M �, compare
igs 12 and 14 ). 

.3 Dependence on effecti v e temperature of instability 

n this section, the dependence on ef fecti ve temperature of the
nstabilities found in the YHG domain will be studied. For this
urpose, sequences of envelope models with the ef fecti ve temper-
ture as a parameter co v ering the range between red supergiant
nd blue supergiant (BSG) are constructed and tested for stability.
dopting the chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02),

he various sequences are characterized by the values selected for
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Figure 13. Same as Fig. 11 , but with the three lowest neutrally stable 
adiabatic eigenfrequencies (dashed lines) added. We emphasize that there 
is no instability in the adiabatic approximation and the adiabatic frequencies 
do not appear to provide an approximation to the correct frequencies at all. 

Figure 14. Same as Fig. 12 , but for envelope models with a higher luminosity 
( L = 6 × 10 5 L �). 

m
1  

o
t  

L
r
e

 

a
i  

r
l  

e
f
a  

a
d

Figure 15. Real parts of the lowest order eigenfrequencies σ as a function of 
ef fecti ve temperature for envelope models with luminosity L = 5 × 10 5 L �, 
mass M = 25 M �, and chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02). 
Unstable modes are indicated by thick lines. Dashed lines correspond to the 
two lowest neutrally stable adiabatic eigenfrequencies. 

Figure 16. Imaginary parts of the lowest order eigenfrequencies σ as a 
function of ef fecti v e temperature for env elope models with luminosity L = 5 
× 10 5 L �, mass M = 25 M �, and chemical composition ( X , Y , Z ) = (0.74, 
0.24, 0.02). 
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ass and luminosity. For a sequence with luminosity L = 5 ×
0 5 L � and mass M = 25 M �, real and imaginary parts of the lowest
rder eigenfrequencies σ are presented as a function of ef fecti ve 
emperature in Figs 15 and 16 . In addition to the non-adiabatic
NA analysis, also an adiabatic analysis has been performed. Its 

esult, i.e. the frequencies of the two lowest neutrally stable adiabatic 
igenfrequencies is also shown in Fig. 15 . 

Figs 15 and 16 demonstrate that the mode interactions and associ-
ted instabilities with growth rates in the dynamical regime identified 
n the YHG domain persist for the entire ef fecti ve temperature
ange from red to blue supergiants. Whether the stable gap around 
og T eff ≈ 3.7 is significant, remains to be seen. Again, the adiabatic
igenfrequencies do not provide an approximation to the exact 
requencies in any respect, as the adiabatic approximation does not 
pply. We emphasize that for the entire range of ef fecti ve temper-
tures studied adiabatic instability does not exist. The treatment of 
ominant convection in particular the coupling of strong convection 
nd pulsation is still an unsolved problem and becomes important at
he low-temperature end of the model sequence. With respect to these
ncertainties, the results in the RSG domain should be interpreted 
ith caution. 
With regard to the controversial discussion of adiabatic instability 

f massive stars in the BSG and luminous blue variable (LBV)
hase (see Glatzel & Kiriakidis; 1998 and Stothers; 1999 ), we have
erformed an adiabatic analysis for additional sequences of envelope 
odels. For four sequences, the results in terms of the lowest order

diabatic eigenfrequencies as a function of ef fecti ve temperature are
hown in Figs 17 and 18 . σ 2 is real and remains positive in any
ase. Thus, all modes are neutrally stable and an adiabatic instability
oes not exist. The sequences of a v oided crossings appearing at high
f fecti ve temperatures in Fig. 17 are caused by the crossing of two
MNRAS 529, 4947–4957 (2024) 
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M

Figure 17. The real and positive square σ 2 of the three lowest neutrally stable 
adiabatic eigenfrequencies as a function of ef fecti ve temperature for envelope 
models with chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02), luminosity 
L = 10 6 L � and mass M = 70 M � (full lines). Dashed lines represent the 
eigenfrequencies for envelope models with luminosity L = 5 × 10 5 L � and 
mass M = 45 M �. 

Figure 18. The real and positive square σ 2 of the two lowest neutrally stable 
adiabatic eigenfrequencies as a function of ef fecti ve temperature for envelope 
models with chemical composition ( X , Y , Z ) = (0.74, 0.24, 0.02), luminosity 
L = 10 6 L � and mass M = 40 M � (full lines). Dashed lines represent the 
eigenfrequencies for envelope models with luminosity L = 5 × 10 5 L � and 
mass M = 25 M �. 
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ets of acoustic modes associated with two acoustic cavities in the
tellar envelope and have been discussed, e.g. by Kiriakidis, Fricke &
latzel ( 1993 ) and Glatzel & Kiriakidis ( 1998 ). 

 DISCUSSION  

.1 Non-adiabatic stability analysis 

he study of the stability of massive stars in the vicinity of
he Humphreys–Davidson limit dates back to the investigation
f Glatzel & Kiriakidis ( 1993 ), where violent instabilities with
rowth rates in the dynamical range have been identified. These
NRAS 529, 4947–4957 (2024) 
nstabilities have been found to be associated with mode coupling
nd the apparent occurrence of additional unexpected, until then
ncomprehensible modes, which were addressed as ‘strange modes’,
he associated instabilities as ‘strange mode instabilities’. With the
rri v al of new opacities that correctly account for the contribution of
eavy elements (Rogers & Iglesias 1992 ), the study by Glatzel &
iriakidis ( 1993 ) has been repeated by Kiriakidis et al. ( 1993 )
n the basis of these opacities with similar results for ef fecti ve
emperatures below ≈20 000 K. For higher effective temperatures,
dditional metallicity-dependent strange mode instabilities have been
dentified. The boundary in the HR diagram, abo v e which all stellar

odels independent of metallicity exhibit violent strange mode
nstabilities with growth rates in the dynamical regime, was found to
oincide with the observ ed Humphre ys–Davidson limit. Meanwhile,
he investigations have been confirmed several times and strange

ode instabilities are in general expected to occur, if the luminosity-
o-mass ratio (in solar units) exceeds values around ≈10 4 (see e.g.
aio 2011 ). 
According to the previous studies, strange mode instabilities are

o be expected for the models of YHGs considered here, as their
uminosity-to-mass ratio (in solar units) is of the order of ≈10 4 . In
act, the multiple mode couplings associated with violent instabilities
hat have been discussed in the previous sections correspond to
trange modes and strange mode instabilities. That certain sequences
f mode interactions may create the impression of additional
strange’ modes, has been described by Gautschy & Glatzel ( 1990b )
nd may be seen in Fig. 15 , where the eigenfrequencies are presented
s a function of ef fecti ve temperature rather than as function of
ass. Ho we ver, not all ‘strange modes’ are caused by mode coupling

rocesses. F or e xample, the mode with the lowest frequency at M =
0 M � in Fig. 1 and strongly increasing frequency and damping rate
or decreasing mass, belongs to the thermal rather than to the acoustic
pectrum. This classification is suggested by considering the thermal
ime-scale, being small for low masses and increasing with mass
cf. Fig. 5 ). Consequently, thermal frequencies should decrease with
ass, as seen for the mode discussed. Note that around ≈35 M � the

hermal mode interacts with the acoustic spectrum through a v oided
rossings, which for the lowest acoustic mode is not very well
ronounced. 
Another indication for the presence of thermal modes is found in

igs 15 and 16 . Around log T eff ≈ 4, both the real and imaginary part
f the lowest order mode approach zero thus suggesting a classifica-
ion as a thermal mode at least in a gap around log T eff ≈ 4. Across
his gap the mode has not been followed continuously, since multiple
nteractions with thermal modes close to zero frequency make an
nambiguous continuous tracking e xtremely difficult. Moreo v er, for
he models considered the thermal spectrum is not decisive for stellar
tability, even though its study may be of academic interest. 

.2 Adiabatic stability analysis 

ue to short thermal time-scales for large fractions of the considered
tellar envelopes (see Fig. 5 ), the adiabatic analysis is invalid and
as been found not to provide a satisfactory approximation to the
xact results in any respect. Moreover, none of the models studied
xhibits an adiabatic instability. As a v alue belo w 4/3 of the mean of
he pressure-weighted volumetric mean of the adiabatic exponent
s a sufficient condition for instability (see Ledoux & Walraven
958 ), this result strictly pro v es that the mean adiabatic index stays
bo v e 4/3 in any case. We note that the primary procedure to test
diabatic stability consists of calculating the (real) square σ 2 of
he fundamental adiabatic eigenfrequency σ . Its sign provides a
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ecessary and sufficient condition for adiabatic stability: For σ 2 < 0, 
e have instability, otherwise stability. In this study, we have applied 

his method. A secondary procedure providing a sufficient condition 
or instability only is based on the Rayleigh–Ritz variational principle 
ssociated with the differential adiabatic perturbation problem (see 
edoux & Walraven; 1958 and Glatzel & Kiriakidis; 1998 ). It allows

or an estimate of an upper bound for σ 2 of the adiabatic fundamental
ode, whose sign is determined by 3 〈 γ ad 〉 − 4, where 〈 γ ad 〉 denotes

he pressure-weighted volumetric mean of γ ad o v er the entire stellar
odel. Thus, 〈 γ ad 〉 < 4/3 is a sufficient but not necessarily necessary

ondition for instability. We emphasize that for the mean of the 
diabatic exponent the entire stellar model has to be taken into 
ccount and that the domain for calculating the mean cannot be 
hosen arbitrarily. Otherwise 〈 γ ad 〉 could be given any arbitrary value 
see Fig. 10 ). 

Our results concerning adiabatic stability are in blatant contradic- 
ion to the common perception of instability regions in the upper HR
iagram (see e.g. de Jager et al. 2001 ; Stothers & Chin 2001 ). The
re v ailing opinion assumes that two domains of adiabatic instability 
xist, where the ‘blue’ domain accommodates the LBVs and the 
yellow–red’ domain the YHGs. Apart from Stothers & Chin ( 2001 )
hose study reportedly is based on an explicit solution of the 

diabatic wave equation, all other studies rely on a consideration 
f the mean adiabatic exponent for the determination of the domains 
f instability. 
With respect to the ‘blue’ instability domain, we have already 

ontradicted the common view in an earlier paper (Glatzel & 

iriakidis 1998 ) by (a) arguing that the adiabatic approximation is not
alid at all due to short thermal time-scales in the stellar envelope and
y (b) explicitly demonstrating that there is no adiabatic instability. 
hus, the arguments raised here are not new and have been produced
lready in earlier studies in a similar context. 

.3 The relation between non-adiabatic and adiabatic stability 
nalysis 

oncerning the objections raised in Glatzel & Kiriakidis ( 1998 ), 
omments were published by Stothers ( 1999 ), which also form
he basis of the study by de Jager et al. ( 2001 ). According to
tothers ( 1999 ), adiabatic stability and non-adiabatic stability are 
onsidered separately and independently. We strongly disagree, 
ince the adiabatic analysis is an approximation and subordinate 
o the non-adiabatic analysis, which can only be applied if the 
hermal time-scales tend to infinity. It depends on the stellar 

odel, whether a complete non-adiabatic analysis is required or 
he adiabatic analysis is sufficient. For massive stars having short 
hermal time-scales in their envelopes, the adiabatic approximation 
s not valid and the appropriate analysis must take thermal effects 
nto account. There is no choice concerning the analysis, and the 
wo approaches (non-adiabatic and adiabatic analyses) cannot be 
pplied independently and separately. In particular, it is meaningless 
o distinguish between dynamical and pulsational instability. Note 
hat in our studies the term ‘dynamical’ only refers to the time-
cale and not to the type or mechanism of an instability. In the
otation of Stothers ( 1999 ), it seems that the term ‘dynamical
nstability’ is also used as an equi v alent for ‘adiabatic instability’.
hus, we conclude that an adiabatic stability analysis for the 
assive stars considered is irrelevant. Compared to this, the fact 

hat we do not find adiabatic instabilities is of minor importance. 
n explanation for the discrepancy is not presented by Stothers 

 1999 ). 
.4 Criteria for adiabatic instability and their deri v ation 

n general, the criterion for adiabatic instability involving the 
diabatic exponent is derived from the Rayleigh–Ritz variational 
rinciple associated with the differential adiabatic perturbation 
roblem (see Ledoux & Walraven 1958 ; Glatzel & Kiriakidis 1998 ).
tothers ( 1999 ) presents an alternati ve deri v ation providing the same

nstability criterion as a result. It is based on an integral relation
or the eigenfrequency (equation 2 of Stothers 1999 ), which may
e derived either from the virial theorem or from an integration
f the adiabatic wave equation (see Ledoux & Walraven 1958 ).
ontrary to the Rayleigh–Ritz variational principle, this relation is 
ot quadratic but linear in the Lagrangean displacement, which here 
s to be regarded as a solution of the wave equation rather than as
 test function of the variational principle. A simple inspection of
he wave equation shows that for γ ad = 4/3 and σ 2 = 0, a constant
agrangean displacement provides a solution of the perturbation 
roblem. Stothers ( 1999 ) verifies this by numerical calculation 
nd suggests to insert a Heaviside function for the Lagrangean 
isplacement in his integral relation (2) for σ 2 . Integration by parts
hen leads to a relation (equation 3 of Stothers 1999 ), apparently
imilar to that obtained from the Rayleigh–Ritz formalism (see e.g. 
quation A4 of Glatzel & Kiriakidis 1998 ), which forms the basis of
he adiabatic instability criterion. In his deri v ation, Stothers ( 1999 )
nserts a Heaviside function for the solution of the wave equation in
elation ( 2 ), which holds only for γ ad ≈ 4/3 and σ 2 ≈ 0. For the
atter, relations ( 2 ) and ( 3 ) are in fact identically satisfied. Ho we ver,
gnoring and relaxing the initial assumptions γ ad ≈ 4/3 and σ 2 ≈ 0 
which guarantee the Heaviside function as a solution of the wave
quation), to derive a relation for γ ad 
= 4/3 and σ 2 
= 0, implies a
ontradiction. Accordingly, even if the result appears to be correct, 
e consider its deri v ation to be wrong. 

.5 Comparison with obser v able quantities 

or a comparison with observable quantities it might be tempting 
o convert the dimensionless frequencies derived here into pulsation 
eriods and e-folding times. Ho we ver, we emphasize that this study
s entirely based on a linear analysis that does not allow for a
etermination of amplitudes. Therefore, e-folding times can, in 
rinciple, not be related to any observed light v ariations, e ven if there
ight be a tendency that final amplitudes reached in the non-linear

egime increase with the growth rate of the underlying instability 
see e.g. Grott, Chernigovski & Glatzel 2005 ). 

Non-linear simulations of strange mode instabilities have shown 
see e.g. Glatzel 2009 ) that due to their strength the stellar envelope is
nflated by successive shock waves. As a consequence, the pulsation 
eriod increases and finally is significantly larger than the period 
etermined by the linear analysis. We expect this behaviour also for
he strange mode instabilities in YHGs, except possibly for models 
lose to the onset of instability, where the growth rates are small.
ccordingly, a comparison of linear periods with observed periods 
ust be treated with caution. 
Taking these cautionary remarks into account, the dimensionless 

requencies σ can be converted into pulsation periods P and e-folding 
imes τ e by 

 = 

2 π

σr 

√ 

R 

3 

3 GM 

(4) 

nd 

e = 

1 

σ

√ 

R 

3 

3 GM 

, (5) 
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here R denotes the stellar radius and G is the gravitational constant.
quation ( 4 ) represents the period–density relation and contains the
lobal dynamical time-scale that may be expressed as 
 

R 

3 

3 GM 

= 23 . 2 d 

(
L 

5 × 10 5 L �

)3 / 4 (
T eff 

7000 K 

)−3 (
M 

25 M �

)−1 / 2 

. 

(6)

Using equations ( 4 ) and ( 6 ), we obtain from Fig. 1 theoretical
ulsation periods for ρ Cas in the range between approximately
6 and 292 d. Noteworthy, the latter agrees considerably well with
yclic photometric variability of 200–300 d reported for ρ Cas over
he past decades (Zsoldos & Perc y 1991 ; Perc y, Kolin & Henry
000 ; Kraus et al. 2019 ). Moreo v er, the models for stars with LMC
etallicity (Fig. 11 ) predict periods of about 750 d from the lowest

rder eigenfrequency for stars with about 30 M �, which is similar
o the dominant period derived by Kourniotis et al. ( 2022 ) from the
hotometric light curves of the two LMC objects HD 269723 (800 d)
nd HD 271182 (833 d). 

 C O N C L U S I O N S  

e hav e inv estigated the stability of stellar models in the YHG
omain with respect to infinitesimal radial perturbations. For
uminosity-to-mass ratios abo v e ≈10 4 , violent strange mode instabil-
ties with growth rates in the dynamical regime have been identified.
dopting the luminosities and masses derived from observations, we

hus predict YHGs to suffer from these instabilities. For luminosity-
o-mass ratios abo v e ≈10 4 , the strange mode instabilities persist o v er
he entire range of ef fecti ve temperatures from RSGs to BSGs, except
ossibly for a small stable gap around log T eff ≈ 3.7. Whether this
ap is significant remains to be studied. Should it be rele v ant for
tellar evolution, it could mean that stars are forced to evolve into
his gap, and may be pushed back into the gap once they try to evolve
nto the surrounding unstable domains. 

The envelopes of YHGs with a pronounced core envelope structure
re characterized by short thermal time-scales and dominant radiation
ressure, which according to a model for strange mode instabilities
y Glatzel ( 1994 ) are essential ingredients for the occurrence of
trange mode instabilities. In accordance with the short thermal
ime-scales, the NAR approximation (vanishing thermal time-scale)
as been found to describe mode interactions and instabilities at
east qualitatively correct, when compared with the exact results.
n contrast to the NAR approximation, the opposite approximation
f infinite thermal time-scale (adiabatic approximation), as expected,
oes not provide an approximation to the exact results in any respect.
e emphasize that due to the short thermal time-scales in YHG

nvelopes a non-adiabatic analysis is mandatory and an adiabatic
nalysis is irrele v ant. 

According to the common perception, adiabatic instability causes
nstability regions in the upper HR diagram that also cover the YHG
omain. Therefore, we have performed an adiabatic analysis for
HG models, even if the short thermal time-scales indicate that

he adiabatic approximation does not hold there. Contrary to the
re v ailing opinion, our results do not exhibit any adiabatic instability.
hus, we disagree with the common conception in two respects:

i) the adiabatic approximation is not applicable and (ii) even if
he adiabatic approximation was applicable, there is no adiabatic
nstability. 

The linear analyses performed here provide information neither
n the amplitude that an unstable perturbation may reach, nor on
he final fate of an unstable object. To determine them, the evolution
NRAS 529, 4947–4957 (2024) 
f instabilities into the non-linear regime needs to be followed by
umerical simulation. For strange mode instabilities in massive stars,
uch simulations (see e.g. Glatzel et al. 1999 ; Grott et al. 2005 )
ndicate that pulsationally driven mass-loss may be a consequence
f the instability . Currently , we are performing corresponding nu-
erical simulations for YHG models, which we expect to provide

nformation about whether strange mode instabilities can contribute
o the observed mass-loss and outbursts of these stars. Their results
ill be commented on in a subsequent paper. 
Strange mode instabilities are not restricted to radial perturbations

nd occur also for non-radial perturbations in a similar way for low
armonic degrees l up to l ≈ 300 (see e.g. Glatzel & Gautschy 1992 ;
latzel & Mehren 1996 ; Glatzel & Kaltschmidt 2002 ). Thus, we

xpect non-radial strange mode instabilities to be present also in
HG models. A corresponding study will be presented elsewhere. 
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