Predicting spectra and spectral classes of chemically-homogeneously evolving stars

Brankica Kubátová & Dorottya Szécsi

University of Cologne

Collaborators:

Sander, A.A.C., Kubát, J., Tramper, F., Krtička, J., Kehrig, C., Hamann, W.-R., Hainich, R., Shenar, T.

> Edinburgh VFTS meeting The Royal Observatory, Edinburgh May 14, 2019

Low-metallicity massive stars

- + For $Z < 0.1~{\rm Z}_{\odot}$ no direct spectroscopic observations
- Indirect traces of their existence
 - total amount of ionizing photons
 - integrated emission lines of WR stars
- Metal-poor dwarf starburst galaxies
 - Sextants A (McConnachie, 2012; Garcia et al., 2018)

Credit: NASA

• I Zwicky 18 (Kehrig et al., 2016)

I Zwicky 18

Low-metallicity massive stars

- Indirect traces of their existence
 - total amount of ionizing photons
 - integrated emission lines of WR stars

TWUIN stars

- Transparent Wind Ultraviolet Intense
- chemically-homogeneously evolving stars
- fast rotating stars
- weak, optically thin stellar winds
- most of radiation in the UV band

Szécsi et al., A&A, 581, A15 (2015)

I Zwicky 18

Motivation

- Predict spectral appearance of fast rotating, chemically-homogeneously evolving stars with $Z_{\rm ini}=0.02~Z_{\odot}$ during
 - Core hydrogen-burning (CHB) phases
 - Core helium-burning (CHeB) phases
- Provide spectral features to guide targeted observing campaigns
- Create a synthetic population and calculate amount of photonionizing flux and the strength of the UV C IV stellar line
- Compare with observational properties of I Zw 18

I Zwicky 18

Stellar evolutionary model sequences

- Bonn evolutionary code for $Z_{ini}=0.02~Z_{\odot}$ (Langer et al., 1988)
- Initial masses and rotational velocities
 - $M_{\rm ini}$ =20 ${
 m M}_{\odot}$ and $v_{\rm ini}^{\rm rot}$ =450 km/s
 - $M_{\rm ini}$ =59 ${
 m M}_{\odot}$ and $v_{\rm ini}^{\rm rot}$ =300 km/s
 - $M_{\rm ini}$ =131 ${
 m M}_{\odot}$ and $v_{\rm ini}^{\rm rot}$ =600 km/s
- Y_S = 0.28, 0.5, 0.75, 0.98 and for CHeB phase
- Mass loss

Zwicky

18

• $Y_{\rm S}$ < 0.55 - prescription for O-type stars (Vink et al., 2000, 2001)

Credit: NASA

• Y_S > 0.7 and during the whole CHeB phase prescription for WR stars (Hamann et al., 1995) reduction by 10 (Nugis & Lamer, 2000)

I Zwicky 18

Stellar atmosphere and wind models

- The Potsdam Wolf-Rayet (PoWR) atmosphere code (Gräfener et al., 2002; Hamann & Gräfener, 2003, 2004; and Sander et al., 2015, 2017)
- Input from stellar evolutionary models
 - $\mathbf{T}_{\text{eff}}, L_*, M_*, \text{ and } \dot{\mathbf{M}}$
 - Chemical compositions (mass fractions): H, He, C, N, O, Ne, Mg, Al, Si, Fe
 - Rotational velocities only for line calculations
- Additional elements (Z $_{\odot}$ /50): P, S, CI, Ar, K, and Ca
- Wind properties
 - β -law: β =0.8 or 1; v_{∞} =1000 km/s
 - Depth dependent clumping factor D

I Zwicky 18

Stellar atmosphere and wind models

• The Potsdam Wolf-Rayet (PoWR) atmosphere code (Gräfener et al., 2002; Hamann & Gräfener, 2003, 2004; and Sander et al., 2015, 2017)

Grid of the models

- In total 60 models
 - with nominal (higher) M and reduce M by 100
 - with smooth wind and clumped wind (D=10)
- SEDs and normalized spectra are calculated

Wind properties

- β -law: β =0.8 or 1; v_{∞} =1000 km/s
- Depth dependent clumping factor D

I Zwicky 18

Parameters of the models

<i>M</i> _{ini} [M _☉]	log T _{eff} [K]	$\log L_*$	log ॑ [M _☉ /yr]	Y _s	Y _c	<i>R</i> _*	<i>M</i> _∗ [M_]	V _{rot}
20	1 58	1.68	-8 /8	0.28	0.3/	/ 03	20.0	605
20	4.50	4.00	-0.40	0.20	0.54	4.75	20.0	475
20	4.05	4.97	-7.00	0.50	0.55	5.01	20.0	0/5
20	4.74	5.29	-6.89	0.75	0.78	4.95	19.8	650
20	4.88	5.58	-5.77	0.98	1.00	3.58	19.2	702
20	5.08	5.67	-5.49	0.84	0.10*	1.55	16.8	994
59	4.74	5.75	-7.00	0.28	0.36	8.14	58.9	421
59	4.79	5.94	-6.70	0.50	0.57	8.31	58.7	428
59	4.84	6.13	-5.82	0.75	0.79	8.08	58.3	422
59	4.92	6.29	-4.92	0.98	1.00	6.68	55.3	404
59	5.14	6.34	-4.70	0.68	0.10*	2.60	49.4	755
131	4.76	6.29	-6.17	0.28	0.30	13.71	130.8	905
131	4.79	6.42	-5.89	0.50	0.52	14.26	129.9	925
131	4.84	6.57	-4.96	0.75	0.76	13.63	126.8	820
131	4.93	6.69	-4.27	0.98	0.99	10.18	112.5	520
131	5.14	6.68	-4.23	0.56	0.10*	3.82	93.3	587

- The maximum emission in far-UV and extreme-UV regions
- With increasing $\ensuremath{\mathcal{M}_{\mathrm{ini}}}\xspace$, the luminosity and the resulting flux also increase
- The amount of emitted UV ionizing radiation increases during the evolution of the stars
- CHB phases
 - Decreasing \dot{M} and clumping has no significant influence on emitted radiation (only small differences at wavelengths $\lambda < 227$ Å and $\lambda > 10000$ Å)
- These differences are higher and more visible in the CHeB phases

I Zwicky 18

IASA

ΙZ

IASA

I Zwicky 18

Y_{He,s} = 0.5

4700

ASA

- Early evolutionary phases
 - WEAK AND OPTICALLY THIN WINDS, i.e., TWUIN stars
 - Assumed mass loss has no significant effect
- Later evolutionary phases
 - STRONG AND OPTICALLY THICK WINDS, i.e., WR stars
 - Assumed mass loss has a strong effect
- Almost no any metal lines but strong HeII emission lines
- Similar effect is seen in the UV and IR regions (see Kubátová et al., 2019)
- All this is a consequence of the adopted M prescriptions in the calculations

I Zwicky 18

Zw

ASA

ASA

I Zwicky 18

• CHB phases

- higher M
 – clumping reduces absorption lines or makes emission lines stronger
- reduced M
 – spectra stay almost unchanged with increasing clumping
- The importance of clumping is more pronounced in the CHeB phases
 - higher M very strong effect of clumping
 - reduce M no significant effect of clumping
- Similar effect is seen in the UV and IR regions (see Kubátová et al., 2019)

I Zwicky 18

Spectral classification

Morgan-Keenan spectroscopic classification scheme

M _{ini}	Y _s	D = 1		<i>D</i> = 10	
		reduced M	higher ḋ	reduced M	higher M
20	0.28	O 8.5 V	O 8.5 V	O 9.5 V	09V
20	0.5	O 5.5 III	O 6 III	O 7 III	O 7 III
20	0.75	<04 III	< O 4 III	<04 III	051
20	0.98	O 4 III	< 0 4 1	< O 4 III	041
20	pMS	WO 2 (–)	WO 1	WO 2 (–)	WO 1 (WO 3)
59	0.28	<04 III	<04 III	< O 4 III	<04 III
59	0.5	< O 4 III	< O 4 III	< O 4 III	<041
59	0.75	O 4 III	< 0 4 1	< O 4 III	<041
59	0.98	< O 4 III	< 0 4 1	< O 4 III	(WO 2 or WO 1)
59	pMS	WO 1 (WO 3)	WO 1	WO 1 (WO 3)	WO 1
131	0.28	O 4 III	<04 III	< O 4 III	<041
131	0.5	O 4 III	< O 4 III	<04 III	<041
131	0.75	< O 4 III	< 0 4 1	O 4 III	<041
131	0.98	<04 III	041	< O 4 III	WO 4 (WO 2 or WO 1)
131	pMS	WO 1 (WO 3)	WO 1	WO 1 (WO 3)	WO 1

Spectral classification

Morgan-Keenan spectroscopic classification scheme

Comparison to O6 star (Garcia et al., MNRAS 484, 422)

SA

Comparison to O6 star (Garcia et al., MNRAS 484, 422)

I Zwicky 18

ZWICNY

SA

Comparison to O3 star (Garcia et al., MNRAS 484, 422)

I Zwicky 18

THANK YOU FOR YOUR ATTENTION!

I Zwicky 18