MACROCLUMPING RESOLVES DISCREPANCY BETWEEN H α AND P v MASS-LOSS DIAGNOSTICS

Brankica Šurlan¹ W.-R. Hamann², J. Kubát¹, A. Aret³, L. Oskinova²

¹Astronomical Institute Ondřejov, Czech Republic
²Institut für Physik und Astronomie, Universität Potsdam, Germany
³Tartu Observatory, Tartumaa, Estonia

B. Šurlan (Astronomical Institute Ondřejov)

Massive Stars: From α to Ω

Rhodes, Greece, June 11, 2013 1 / 30

~ a ~

- $\tau_{\rm rad} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars ($q_i \sim 1$)
- $\dot{M}_{P_{v}}$ should agree with \dot{M} from ρ^{2} diagnostic

- $\tau_{\mathsf{rad}} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars $(q_i \sim 1)$
- $\dot{M}_{P_{\rm v}}$ should agree with \dot{M} from ρ^2 diagnostic

ho^2 diagnostics gives higher \dot{M} by a factor of at least 10

(e.g. Crowther et al. 2002, Massa et al. 2003, Hillier et al. 2003, Bouret et al. 2003, 2005, Fullerton, Massa, & Prinja 2006)

P v ($\lambda\lambda$ **1118, 1128** Å**) PROBLEM** – discrepancy between Hα and P v \dot{M} diagnostics

SQ C

- $\tau_{\mathsf{rad}} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars $(q_i \sim 1)$
- $\dot{M}_{P_{\rm v}}$ should agree with \dot{M} from ρ^2 diagnostic

ho^2 diagnostics gives higher \dot{M} by a factor of at least 10

(e.g. Crowther et al. 2002, Massa et al. 2003, Hillier et al. 2003, Bouret et al. 2003, 2005, Fullerton, Massa, & Prinja 2006)

WIND CLUMPING - universal property of O-star winds

- $au_{\mathsf{rad}} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars ($q_i \sim 1$)
- $\dot{M}_{P_{v}}$ should agree with \dot{M} from ρ^{2} diagnostic

WIND CLUMPING - universal property of O-star winds

Standard assumptions

• optically thin clumps – MICROCLUMPING (\dot{M} needs to be scaled down by \sqrt{D})

see e.g., Hamann et al. 2008

- clumping factor D (f=1/D)
- void inter-clump medium (ICM)
- smooth (monotonic) velocity field

SQ C

- $au_{\mathsf{rad}} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars ($q_i \sim 1$)
- $\dot{M}_{P_{v}}$ should agree with \dot{M} from ρ^{2} diagnostic

WIND CLUMPING - universal property of O-star winds

Standard assumptions

• optically thin clumps – MICROCLUMPING (\dot{M} needs to be scaled down by \sqrt{D})

see e.g., Hamann et al. 2008

- clumping factor D (f=1/D)
- void inter-clump medium (ICM)
- smooth (monotonic) velocity field

Reduction of P abundance compared to solar value High clumping factor

_(see e.g., Bouret et al. 2003, 2005, 2012) □ 🕨 🖓 🗗 🕨 💈 🕨 🛓 🔗 ९ 📯

Massive Stars: From α to Ω

- $au_{\mathsf{rad}} \propto \dot{M} q_i A_E$
- P is not a cosmically abundant element (P v never saturates) $\Longrightarrow \dot{M} q_i$
- P v is the dominant ion in the winds of mid- to late- O-type stars ($q_i \sim 1$)
- $\dot{M}_{P_{v}}$ should agree with \dot{M} from ρ^{2} diagnostic

WIND CLUMPING - universal property of O-star winds

Standard assumptions

- optically thin clumps MICROCLUMPING
- clumping factor D (f=1/D)
- void inter-clump medium (ICM)
- smooth (monotonic) velocity field

MACROCLUMPING - clumps of correct optical depth (Oskinova et al. 2007)

SQ C

Research goals

- 3-D description of wind clumping application to O-type stars
- clumps may be either optically thin or thick
- clumping separation parameter (number of clumps)
- onset of clumping (radius at which clumping sets up)
- clumping factor (density inside clumps)
- inter-clump medium density
- velocity deviation parameter (velocity inside clumps)

SQ C

Research goals

- 3-D description of wind clumping application to O-type stars
- clumps may be either optically thin or thick
- clumping separation parameter (number of clumps)
- onset of clumping (radius at which clumping sets up)
- clumping factor (density inside clumps)
- inter-clump medium density
- velocity deviation parameter (velocity inside clumps)
- To fit P v line profiles using the same \dot{M} rates derived from H α diagnostic (solar abundances of P v and less extreme D)
- To derive some global properties of O-star wind clumping

• 5 O-type Galactic supergiants

Star	Other	Spec.
	name	
HD 66811	ζ Pup	O4I(n)fp
HD 15570		O4lf+
HD 14947		O5lf+
HD 210839	λ Cep	O6lf(n)p
HD 192639		O7lb(f)

Table: Spectral types are taken from Sota et al. 2011.

うくぐ

• 5 O-type Galactic supergiants

Star	Other	Spec.
	name	
HD 66811	ζ Pup	O4I(n)fp
HD 15570		O4lf+
HD 14947		O5lf+
HD 210839	<i>λ</i> Cep	O6lf(n)p
HD 192639		O7lb(f)

Table: Spectral types are taken from Sota et al. 2011.

うくぐ

5 O-type Galactic supergiants

OPTICAL SPECTRA

- CCD SITe ST-005 800×2000 pix camera (Ondřejov observatory)
- $6254 6764 \text{ Å} \text{H}\alpha \text{ region } (R = 13\,600)$
- 4656 4908 Å Hβ + He II 4686 Å (R = 19400)
- $4754 5005 \text{ Å} \text{H}\beta \text{ region } (R = 20\,000)$
- $4269 4522 \text{ Å} \text{H}\gamma \text{ region } (R = 17\,600)$

5 O-type Galactic supergiants

OPTICAL SPECTRA

- CCD SITe ST-005 800×2000 pix camera (Ondřejov observatory)
- $6254 6764 \text{ Å} \text{H}\alpha \text{ region } (R = 13\,600)$
- 4656 4908 Å Hβ + He II 4686 Å (R = 19400)
- $4754 5005 \text{ Å} \text{H}\beta \text{ region } (R = 20\,000)$
- $4269 4522 \text{ Å} \text{H}\gamma \text{ region } (R = 17\,600)$

ULTRAVIOLET SPECTRA

- High-resolution FUV spectra (960 to 1190 Å) Far Ultraviolet Spectroscopic Explorer (FUSE) taken from MAST
- Low-resolution NUV spectra (1200 to 2000 Å) International Ultraviolet Explorer (IUE) taken from INES Archive Data Server

Calculation scheme

PoWR – 1-D spherically symmetric wind models

INPUT

STELLAR AND WIND PARAMETERS

Star	$T_{\rm eff}$	log g	R_*	$\log \frac{L}{L_{\odot}}$	β_1	v _∞
	[kK]		$[R_{\odot}]$	0		[km/s]
HD 66811 ²	39.0	3.55	19.6	5.90	0.90	2250
HD 15570 ³	38.0	3.28	21.6	5.94	1.10	2200
HD 14947 ¹	37.5	3.45	26.6	6.09	0.95	2350
HD 210839 ¹	36.0	3.55	23.3	5.91	1.00	2250
HD 192639 ¹	35.0	3.45	18.5	5.66	0.90	2150

Table: Data taken from 1 – Puls et al. 2006; 2 – Oskinova et al. 2007; 3 – Bouret et al. 2012.

PoWR – 1-D spherically symmetric wind models

INPUT PARAMETERS

- STELLAR AND WIND PARAMETERS
- ABUNDANCES

Star	Н	He	С	Ν	0
HD 66811	0.61	0.37	2.86E-03	1.05E-02	1.30E-03
HD 15570	0.71	0.28	3.27E-03	4.79E-03	2.63E-03
HD 14947	0.68	0.31	1.66E-03	5.00E-03	1.44E-03
HD 210839	0.68	0.31	1.32E-03	4.67E-03	3.23E-03
HD 192639	0.62	0.37	1.09E-03	5.01E-03	4.01E-03

Table: Stellar sample's mass fractions of H, He, C, O, N taken from Bouret et al. 2012.

Si =6.649 × 10⁻⁴, Fe-group elements =
$$1.292 \times 10^{-3}$$

P = 5.825 × 10⁻⁶
(solar abundances by Asplund et al. 2009)

nar

PoWR – 1-D spherically symmetric wind models

INPUT PARAMETERS

- STELLAR AND WIND PARAMETERS
- ABUNDANCES
- PHOTOMETRY AND REDDENING

Star	U	в	V	J	Н	к	E(B-V)
HD 66811	0.890	1.941	2.210	2.790	2.955	2.968	0.040
HD 15570	8.391	8.796	8.110	6.477	6.310	6.158	0.966
HD 14947	7.850	8.452	7.998	7.037	6.945	6.861	0.730
HD 210839	4.620	5.242	5.050	5.053	4.618	4.500	0.513
HD 192639	6.830	7.455	7.116	6.300	6.271	6.217	0.620

Table: The photometry - GOC catalog (Maíz-Apellániz et al. 2004), reddening - Bouret et al. 2012.

nar

PoWR – 1-D spherically symmetric wind model

- INPUT PARAMETERS
 - STELLAR AND WIND PARAMETERS
 - ABUNDANCES
 - PHOTOMETRY AND REDDENING
- OTHER PARAMETERS
 - VELOCITY FIELD DOUBLE-BETA LAW

$$v(r) = p_1 \left(1 - \frac{1}{r + p_2} \right)^{\beta_1} + p_{1-2} \left(1 - \frac{1}{r + p_{2-2}} \right)^{\beta_2}$$

PoWR – 1-D spherically symmetric wind model

- INPUT PARAMETERS
 - STELLAR AND WIND PARAMETERS
 - ABUNDANCES
 - PHOTOMETRY AND REDDENING
- OTHER PARAMETERS
 - VELOCITY FIELD DOUBLE-BETA LAW

$$v(r) = p_1 \left(1 - \frac{1}{r + p_2} \right)^{\beta_1} + p_{1-2} \left(1 - \frac{1}{r + p_{2-2}} \right)^{\beta_2}$$

B. Šurlan (Astronomical Institute Ondřejov)

PoWR – 1-D spherically symmetric wind model

INPUT PARAMETERS

- STELLAR AND WIND PARAMETERS
- ABUNDANCES
- PHOTOMETRY AND REDDENING
- OTHER PARAMETERS
 - VELOCITY FIELD double-beta law
 - CLUMPING FACTOR depth dependent D
 - MICROTURBULENCE $v_{mt} = 20 \text{ km/s}$
 - INTERSTELLAR AND DUST EXTINCTION the reddening law of Cardeli et al. 1989

Extinction parameter Distance M

(to best fit strength of the H α line profiles)

~ a ~

Results of 1-D wind modeling

$T_{\rm eff}$	$\log g$	R_*	$\log \frac{L}{L_{\odot}}$	β	U ₀₀
37.5 kK	3.45	26.6 R _☉	6.09	0.95	2350 km/s
d	R_V	M_V	log <i>M</i>		
3.00 kpc	2.80	-6.90 mag	-4.77	_	

FUSE

IUE

Ondřejov

nac

3-D Monte Carlo Radiative Transfer clumped wind model

INPUT FROM 1-D MODELING

- Photospheric spectrum without contribution of P and Si
- Ionization fraction of P v (depth dependent)
- Mass-loss rate (opacity parameter)

3-D Monte Carlo Radiative Transfer clumped wind model

INPUT FROM 1-D MODELING

- Photospheric spectrum without contribution of P and Si
- Ionization fraction of P v (depth dependent)
- Mass-loss rate (opacity parameter)

3-D MC wind solution

(Šurlan, Hamann, Kubát, Oskinova, Feldmeier, 2012, A&A 541, A37)

- to study effects of clumping on resonance line formation (both singlets and doublets)
- dimensionless solution of radiative transfer
- gridless code, no symmetry required
- only line opacity (parametric description)
- parametric description of clumps

~ a ~

3-D Monte Carlo Radiative Transfer clumped wind model

INPUT FROM 1-D MODELING

- Photospheric spectrum without contribution of P and Si
- Ionization fraction of P v (depth dependent)
- Mass-loss rate (opacity parameter)

CLUMPING PARAMETERS

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{\max} = 100 R_*$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	<i>D</i> =10
Interclump medium density factor	<i>d</i> = 0.25
Set-up of clumping	$r_{\rm cl} = 1 R_*$
Velocity deviation	$v_{\rm dis}/v_{\beta}$ = 0.2
Velocity at the photosphere	$v_{\rm min} = 10 [\rm km/s]$
Doppler velocity	$v_{\rm D} = 20 [{\rm km/s}]$
Interclump medium density factor Set-up of clumping Velocity deviation Velocity at the photosphere Doppler velocity	d = 0.25 $r_{cl} = 1 R_*$ $v_{dis}/v_{\beta} = 0.2$ $v_{min} = 10 [km/s]$ $v_{D} = 20 [km/s]$

Opacity parameter

$$\chi_L = \frac{\chi_0}{r^2 \frac{\theta(r)}{\theta_0}} q_{i,E}(r) \phi_x; \quad \phi_x = \frac{1}{\sqrt{\pi}} e^{-x^2}$$
 (Hamann 1980)

• Parametric line opacity for a given \dot{M}

$$\chi_0 = \frac{\pi e^2}{m_e} f_{l,u} \frac{\lambda}{v_D v_\infty} \frac{\dot{M}}{4\pi R_*} \frac{1}{A_k m_H}$$

Constant	Value
Cross-section of the	
classical oscillator	$\pi e^2 (m_{\rm e}c)^{-1} = 0.0265 [{\rm cm}^2 s^{-1}]$
Oscillator strength for	
components of P v	$f_{l,u,\text{blue}} = 2 f_{l,u,\text{red}} = 0.473$
Wavelength	$\lambda_{P_{y}} = 1117.979 \cdot 10^{-8} \text{ [cm]}$
Mass fraction	$X_{P_{y}} = 5.825 \cdot 10^{-6}$
Atomic weight	$A_{P_{y}} = 31$
Atomic mass of hydrogen	$m_{\rm H} = 1.67 \cdot 10^{-24} [g]$

< 🗆 🕨

One-component wind - dense clumps and void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{\rm max} = 100 R_*$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5, 0.3, 0.2, 0.1$
Clumping factor	<i>D</i> =10
Interclump medium density factor	<i>d</i> = 0
Set-up of clumping	$r_{\rm cl} = 1 R_*$
Velocity deviation	$v_{\rm dis}/v_{\beta}$ = 0.2
Velocity at the photosphere	$v_{\rm min}$ = 10 [km/s]
Doppler velocity	$v_{\rm D} = 20 [\rm km/s]$

$$f_V = \frac{1}{D}$$

Image: 1

Sar

One-component wind - dense clumps and void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{\rm max} = 100 R_*$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5, 0.3, 0.2, 0.1$
Clumping factor	<i>D</i> =10
Interclump medium density factor	<i>d</i> = 0
Set-up of clumping	$r_{\rm cl} = 1 R_*$
Velocity deviation	$v_{\rm dis}/v_{\beta}$ = 0.2
Velocity at the photosphere	$v_{min} = 10 [km/s]$
Doppler velocity	$v_{\rm D} = 20 [{\rm km/s}]$

$$f_V = \frac{1}{D}$$

Sar

< 🗆 🕨

Clumps' distribution

 $L_0 = 0.5 (N_{cl} = 1.13 \cdot 10^4); D = 10; d = 0$

Clumps' distribution

 $L_0 = 0.3 (N_{cl} = 5.17 \cdot 10^4); D = 10; d = 0$

Clumps' distribution

 $L_0 = 0.1 (N_{cl} = 1.40 \cdot 10^6); D = 10; d = 0$

500

 $L_0 = 0.5 (N_{\rm cl} = 1.13 \cdot 10^4)$

 $L_0 = 0.5 (N_{cl} = 1.13 \cdot 10^4) L_0 = 0.3 (N_{cl} = 5.17 \cdot 10^4)$

B. Šurlan (Astronomical Institute Ondřejov)

Massive Stars: From α to Ω

Rhodes, Greece, June 11, 2013 13 / 30

 $L_0 = 0.5 (N_{cl} = 1.13 \cdot 10^4) L_0 = 0.3 (N_{cl} = 5.17 \cdot 10^4) L_0 = 0.2 (N_{cl} = 1.75 \cdot 10^5)$

B. Šurlan (Astronomical Institute Ondřejov)

 $L_0 = 0.5 (N_{cl} = 1.13 \cdot 10^4) L_0 = 0.3 (N_{cl} = 5.17 \cdot 10^4) L_0 = 0.2 (N_{cl} = 1.75 \cdot 10^5)$ $L_0 = 0.1 (N_{cl} = 1.40 \cdot 10^6)$

nar

 $L_0 = 0.5 (N_{cl} = 1.13 \cdot 10^4) L_0 = 0.3 (N_{cl} = 5.17 \cdot 10^4) L_0 = 0.2 (N_{cl} = 1.75 \cdot 10^5)$ $L_0 = 0.1 (N_{cl} = 1.40 \cdot 10^6)$

smooth wind

nar

One-component wind (void inter-clump medium)

- even 10⁶ clumps can not reproduce observed P v line profile
- Additional absorbing matter is needed can be put to the space between clumps (inter-clump medium)

Two-component wind – dense clumps and non-void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{\rm max} = 100 R_*$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	<i>D</i> =10
Inter-clump medium density factor	<i>d</i> = 0, 0.1, 0.2, 0.25
Set-up of clumping	$r_{\rm cl} = 1 R_*$
Velocity deviation	$v_{\rm dis}/v_{\beta}$ = 0.2
Velocity at the photosphere	$v_{min} = 10 [km/s]$
Doppler velocity	$v_{\rm D} = 20 [\rm km/s]$

$$f_V = \frac{1-d}{D-d}$$

Jac.

Two-component wind – dens clumps and non-void inter-clump medium

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{\rm max} = 100 R_*$
Opacity parameter	$\chi_0 = 257.8$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	<i>D</i> =10
Inter-clump medium density factor	<i>d</i> = 0, 0.1, 0.2, 0.25
Set-up of clumping	$r_{\rm cl} = 1 R_*$
Velocity deviation	$v_{\rm dis}/v_{\beta}$ = 0.2
Velocity at the photosphere	$v_{\rm min}$ = 10 [km/s]
Doppler velocity	$v_{\rm D} = 20 [\rm km/s]$

$$f_V = \frac{1-d}{D-d}$$

JAC.

$$L_0 = 0.5 (N_{\rm cl} = 1.13 \cdot 10^4), r_{\rm cl} = 1$$

d = 0

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1$$

d = 0, d = 0.1

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1$$

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1$$

d=0.25

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1$$

B. Šurlan (Astronomical Institute Ondřejov)

Massive Stars: From α to Ω

Rhodes, Greece, June 11, 2013 16 / 30

Two-component wind (non-void inter-clump medium)

- Two-component wind is more realistic
- Different combinations of *L*₀ and *d* may give equally good agreement with observation
- Inter-clump medium can not be void!!!

nar

● HD simulations ⇒ clumping starts above photosphere

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.1$$

- SMOOTH region ($r_{min} < r < r_{cl}; r_{min} = R_*$)
- CLUMPED region (r_{cl} < r < r_{max}) Two density components: ICM and CLUMPS

Sar

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1$$

• SMOOTH region (r_{min} < r < r_{cl}; r_{min} = R_{*})

CLUMPED region

 (r_{cl} < r < r_{max})
 Two density components:
 ICM and CLUMPS

Sar

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.1$$

d = 0

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.1$$

d = 0, d = 0.1

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.1$$

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$$

d = 0

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$$

d = 0, d = 0.1

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1.3$$

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ d = 0.25$$

Massive Stars: From α to Ω

One-component wind

 wind clumping has to start at the surface of the star otherwise absorption dip appears

Two-component wind

- inter-clump medium hides spectral signature of onset of clumping
- different combination of r_{cl} and d may give very similar agreement with observations

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1, \ d = 0.25$$

 $v_{\rm dis} / v_{\beta} = 0.01$

Massive Stars: From α to Ω

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1, \ d = 0.25$$

 $v_{\rm dis}/v_{\beta} = 0.01, v_{\rm dis}/v_{\beta} = 0.1$

$$L_0 = 0.5 \ (N_{\rm cl} = 1.13 \cdot 10^4), \ r_{\rm cl} = 1, \ d = 0.25$$

B. Šurlan (Astronomical Institute Ondřejov)

Massive Stars: From α to Ω

Rhodes, Greece, June 11, 2013 21 / 30

"Vorosity'

- mainly affects outer part of the wind (extending absorption beyond v_∞)
- insignificant reduction of line strength

Global clumping properties

Fixed clumped model parameters used in our 3-D MC code to fit the observed P v lines

Model parameters	Value
Inner boundary of the wind	$r_{\rm min} = 1 R_*$
Outer boundary of the wind	$r_{max} = 100 R_{*}$
Clump separation parameter	$L_0 = 0.5$
Clumping factor	<i>D</i> = 10
Set-up of clumping	$r_{cl} = 1 R_{*}$
Velocity at the photosphere	$v_{\rm min} = 10 [\rm km/s]$
Doppler velocity	$v_{\rm D} = 20 [{\rm km/s}]$

Derived clumping parameters

Star	Interclump medium	Velocity deviation	М
	density factor d	^{<i>V</i>} dis	$[10^{-6}] M_{\odot}/yr$
HD 66811	0.15	0.25	2.51
HD 15570	0.40	0.20	2.75
HD 14947	0.25	0.20	2.82
HD 210839	0.25	0.10	1.62
HD 192639	0.10	0.01	1.26

4 m b

JAC.

Summary

- Macroclumping (both optically thin and thick clumps exist) resolves discrepancy between Hα and P v M rates
- We do not need to lower P v abundance
- We do not need extreme clumping factor D
- Inter-clump medium is needed to achieve satisfactory agreement with observed P v line profiles
 - number of clumps the higher the inter-clump medium density is, the lower is the number of clumps
 - onset of clumping clumping may start farther from the surface of the star only if inter-clump medium is not void
- Velocity dispersion inside clumps is important to model outer part of the wind

Šurlan et al., in preparation

nar

THANK YOU FOR YOUR ATTENTION!

B. Šurlan (Astronomical Institute Ondřejov)

Massive Stars: From α to Ω

B Rhodes, Greece, June 11, 2013 25/30

DAG

=